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Abstract

Background: High-throughput experimental methods have fostered the

systematic detection of millions of genetic variants from any human genome. To

help explore the potential biological implications of these genetic variants,

software tools have been previously developed for integrating various types of

information about these genomic regions from multiple data sources. Most of

these tools were designed either for studying a small number of variants at a

time, or for local execution on powerful machines.

Results: To make exploration of whole lists of genetic variants simple and

accessible, we have developed a new Web-based system called VAS (Variant

Annotation System, available at https://yiplab.cse.cuhk.edu.hk/vas/). It

provides a large variety of information useful for studying both coding and

non-coding variants, including whole-genome transcription factor binding, open

chromatin and transcription data from the ENCODE consortium. By means of

data compression, millions of variants can be uploaded from a client machine to

the server in less than 50 megabytes of data. On the server side, our customized

data integration algorithms can efficiently link millions of variants with tens of

whole-genome datasets. These two enabling technologies make VAS a practical

tool for annotating genetic variants from large genomic studies. We demonstrate

the use of VAS in annotating genetic variants obtained from a migraine

meta-analysis study and multiple data sets from the Personal Genomes Project.

We also compare the running time of annotating 6.4 million SNPs of the CEU

trio by VAS and another tool, showing that VAS is efficient in handling new

variant lists without requiring any pre-computations.

Conclusions: VAS is specially designed to handle annotation tasks with long lists

of genetic variants and large numbers of annotating features efficiently. It is

complementary to other existing tools with more specific aims such as evaluating

the potential impacts of genetic variants in terms of disease risk. We recommend

using VAS for a quick first-pass identification of potentially interesting genetic

variants, to minimize the time required for other more in-depth downstream

analyses.

Keywords: Annotation; Genetic Variants; Genomic Studies; Data Integration16

17
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Background18

High-density microarrays and massively parallel sequencing have made genome-wide19

detection of genetic variants from human DNA samples systematic, efficient and20

inexpensive. In these experiments, it is common to observe hundreds of thousands21

or even millions of loci in the DNA of a studied sample that differ from the reference22

genome. To explore possible links between these variants and the phenotypes of the23

sample, it is necessary to first analyze the potential biological significance of each24

variant.25

Early-days analysis methods have focused on the potential impacts of genetic26

variants in coding regions, the functional consequences of which are usually related27

to alterations to the corresponding proteins. There have been many successful soft-28

ware tools for classifying coding variants into those that are synonymous, missense29

and nonsense, whether they may affect splicing or cause frameshift, and the level30

of disruption to protein functions and structures [1, 9, 22, 25, 29, 33].31

On the other hand, it is now well-recognized that many functionally important32

genetic variants do not change the coding sequences directly but rather perturb33

gene regulation [11, 13]. For example, a single nucleotide variant (SNV) may hit34

the binding motif of a transcription factor, which affects the proper binding of it35

and leads to an expression level change of the regulated gene. Since currently there36

is not a complete catalog of regulatory regions in the human genome, in order37

to determine how likely a genetic variant may affect gene regulation, one needs to38

examine many types of static and cell/tissue-specific features indicative of functional39

significance. Static features such as evolutionary conservation and sequence motifs40

help evaluate the possibility for a genomic region to ever play a functional role,41

while cell/tissue-specific features provide information about regulatory activities in42

each genomic region in particular cell/tissue types and conditions. Combining both43

types of features provides a quick and low-cost way to pinpoint the potentially44

most interesting variants for downstream validation and functional studies. For45

example, DNase I hypersensitivity and certain histone marks together could identify46

regulatory regions active in particular cell types that are far away from their target47

genes [18], while integrating such information with sequence motifs could further48

predict the transcription factors involved in the gene regulation.49



Ho et al. Page 4 of 17

A large amount of data containing cell/tissue-specific features have been pro-50

duced for various human cell types in large-scale studies such as ENCODE [13]51

and Roadmap Epigenomics [5]. To utilize these data in studying genetic variants, a52

number of Web tools have been developed for automatic large-scale genomic data53

integration [3, 6, 7, 16, 20, 21, 23, 26, 28, 34]. Each of them provides a database of54

genomic features collected from multiple data sources, and a procedure for users to55

query selected features around their genetic variants. These tools face two common56

challenges, namely 1) A list of genetic variants in standard Variant Call Format57

(VCF) could take up hundreds of megabytes and need a long time to upload; and58

2) Integrating a long variant list with a large number of whole-genome features is59

time-consuming.60

Concerning the data uploading issue, some tools restrict the maximum number of61

genetic variants per job to a small value, while others do not set an explicit limit but62

practically cannot handle full lists of millions of variants [3, 6, 7, 23]. Some other63

tools avoid the uploading of large files by allowing local installation and execution,64

which requires a large amount of genomic features to be downloaded to the user65

machine [26].66

Regarding the data integration issue, most tools use a relational database to store67

the collected data. As a result, a table join between a stored feature and the uploaded68

genetic variants is often performed by time-inefficient algorithms that make use of69

standard tree-based indices. Although more efficient linear-time sort-merge join70

algorithms are available, it could be difficult to instruct the query optimizer to use71

them. Some tools attempted to solve this problem by pre-computing the results of72

a large amount of table joins [10, 26], which requires extra disk space for storing the73

pre-computed results and new pre-computation needs to be performed every time74

a new genomic feature is added to the database.75

To overcome these two issues, we have developed VAS (Variant Annotation Sys-76

tem), a tool for efficient genomic data integration.77

Implementation78

The overall workflow of VAS is shown in Figure 1. Below we describe its different79

components in detail.80
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Genomic Features in VAS81

VAS provides a large variety of genomic features collected from different data sources82

(Table 1). To help explore genetic variants in non-coding regions, it provides a83

rich set of whole-genome features about sequence patterns, conservation, chromatin84

states and expression signals from various experimental and computational data85

sets. Cell/tissue-specific data based on different cell types studied by the ENCODE86

Project Consortium and Roadmap Epigenomics are provided for some features. Ad-87

ditional features are provided for referencing previous findings about known vari-88

ants and their loci, including previously cataloged SNPs, information about disease89

SNPs, and Gencode gene annotation, which contains a large number of non-coding90

RNAs.91

Feature selection, data compression and data integration92

A user uploads a list of genetic variants and selects the features to be integrated93

through a user-friendly Web interface. Multiple data formats are supported for94

the input list of genetic variants, including VCF and white-space-delimited lists.95

In our test, uploading 3 million genetic variants involved less than 50 megabytes96

of data transfer (Figure 2). The enabling technology behind this small uploading97

data size is a compression procedure that VAS performs on the client side. In a98

standard VCF file, there is a lot of information not required for the data integration99

purpose. Our Flash plugin takes the user-supplied variant file, retains only genomic100

locations, and removes repetitive text such as chromosome names. The resulting file101

contains compact arrays of chromosomal locations, one for each chromosome. This102

compression process is transparent to the user in that a user only needs to specify103

a standard genetic variant file as input and the compression will be automatically104

performed before the compressed data is transferred to the server.105

The genomic features to be integrated with the genetic variants are selected from106

a Web interface that provides a list of the features available. Functions are also pro-107

vided for searching for particular datasets using their attributes such as cell type108

(Figure 3a). For each genetic variant, VAS can search for genomic features overlap-109

ping its exact location or a flanking window of it up to 1Mb, allowing exploration110

of nearby loci in genetic linkage to the input variants.111
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Upon submitting the input variants and the selected genomic features, the data112

integration job is added to a queue on the server side. The back-end system adopts113

a scalable design that allows executing multiple jobs on different computing nodes114

in parallel. The user is redirected to a waiting page that provides the latest status115

of the job. Optionally, if an email address is entered, an email notification will be116

sent to the user when the job is finished.117

We store data in a customized file format without relying on a relational database,118

which facilitated our design of linear-time integration algorithms that can efficiently119

identify overlapping genomic regions in different data files. Specifically, for each120

feature, the genomic regions containing feature values are sorted according to their121

genomic locations. Special pointers are added to particular locations (such as the122

start of each chromosome) in the genome to allow direct access of these locations123

without a sequential scan of all regions from the beginning of the file.124

We provide two types of data integration. The first one is identifying genomic fea-125

tures overlapping exactly the locations of the input genetic variants (exact location126

for an SNV or insertion, mid-point for a deletion). The second one is identifying127

genomic features overlapping a flanking window of each input genetic variant. Both128

types of integration are performed by sort-merge algorithms.129

For the first type of data integration, we first sort the input variants according130

to their locations. We then use a pointer to scan through all the genetic variants131

and all the genomic feature regions sequentially. Whenever a region of the genomic132

feature is encountered, we add it to a feature queue. Any genetic variant that is133

then encountered before the end of the region will be annotated with the region134

and the result is stored in the variant map (see Figure 4 for an example). More135

specifically, during the scanning process, the algorithm takes one of the following136

actions whenever a point of the corresponding type is encountered:137

• Location of a variant: Annotate the variant with all the regions currently in138

the feature queue and store the results in the variant map139

• Starting position of a feature region: Add the region to the feature queue140

• Ending position of a feature region: Remove the region from the feature queue141

For the second type of data integration, the integration algorithm is similar to142

the one for the first type, except that now instead of considering a single location143

of each genetic variant, we consider the starting and ending positions of its flanking144
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window. During the scanning process, the algorithm takes one of the following145

actions whenever a point of the corresponding type is encountered (see Figure 5 for146

an example):147

• Starting position of the flanking window of a variant: Add the variant to148

the variant queue, annotate the variant with all the regions currently in the149

feature queue and store the results in the variant map150

• Ending position of the flanking window of a variant: Remove the variant from151

the variant queue152

• Starting position of a feature region: Add the region to the feature queue,153

annotate all variants currently in the variant queue with the region and store154

the results in the variant map155

• Ending position of a feature region: Remove the region from the feature queue156

We have compared the speed efficiency of these data integration algorithms with157

some alternative methods. For all the methods, we tried to integrate a list of 57,902158

variants with a genomic feature with 17,524 regions. We tested both types of data159

integration, with the size of the flanking window set to 100bp in the second type of160

integration. The time needed for the different methods to perform the integration161

task is shown in Table 2. Our customized algorithms were found to be the most162

efficient among the methods in comparison.163

When the data integration is finished, the results are displayed on a Web page164

that shows information about the selected features around each input variant (Fig-165

ure 3b). In the case of numeric features, the average feature values around each166

variant and their percentiles among all genomic regions are also shown. Details167

of the features can be displayed in a signal-track image generated by the UCSC168

Genome Browser (Figure 3c). Linking to a corresponding UCSC Genome Browser169

session is provided for more visualization options and interactive explorations. Inte-170

gration results can also be downloaded in Microsoft Excel or tab-delimited formats171

for further analyses.172

Each data integration job is given a unique 512-bit identifier. The user who issues173

a job can browse and download the results at a later time by using the provided174

hyperlink with this identifier embedded. All job files are kept on the server for 30175

days. Other users without this identifier are unable to access the uploaded data or176

the corresponding data integration results.177
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Currently there are several related tools providing genome-wide annotation of178

genetic variants. Each of these tools has its unique features and advantages. We list179

in Table 3 some of the distinctive properties of VAS.180

Results and discussion181

Case studies182

As a demonstration of using VAS in exploring potential functional meanings of183

genetic variants, we used it to analyze two sets of genetic variants with different184

sets of genomic features.185

The first set of genetic variants includes the susceptibility loci for migraine identi-186

fied in a recent study [2]. In that study, a genome-wide meta-analysis was performed187

on the data from 29 genome-wide association studies, which together involved 23,285188

individuals with migraine and 95,425 population-matched controls. Twelve loci were189

identified to be significantly associated with migraine, while 5 loci were found to190

have significant expression quantitative trait loci (eQTL). We used VAS to retrieve191

information about various types of static and cell-specific data around these 17 loci.192

For static features, we considered evolutionary conservation, known variants in db-193

SNP and GWAS Catalog, protein binding motifs and CpG islands. For cell-specific194

features, we considered histone modifications, open chromatin and transcription195

factor binding data from ENCODE sequencing experiments for both normal brain196

and spinal cord cells (HAc, HA-h, HA-sp and NH-A) and brain cancer lines (BE2 C,197

Gliobla, Medullo and SK-N-SH RA).198

Figure 3b shows part of the annotation results, where the darkness of a table en-199

try indicates how strong the signal value is. It can be seen that many features have200

strong signals around the susceptibility loci. As an example, Figure 3c shows the de-201

tailed view of rs12134493 (marked by the red line), which is at position 115,479,469202

(hg18)/ 115,677,946 (hg19) of chromosome 1. It is located in an intergenic region203

downstream of and close to the TSPAN2 gene. In the original study [2], it was found204

that the susceptibility loci in general had strong open chromatin signals in terms of205

DNase I hypersensitivity, and they overlapped with some transcription factor bind-206

ing motifs. Consistent with their findings, VAS was able to find overlaps between207

the SNP and open chromatin signals in various normal brain cells (Figure 3c i, ii)208
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and the presence of binding motifs for multiple transcription factors around that209

region (Figure 3c iii).210

We also made a number of additional interesting observations based on the VAS211

results. First, the open chromatin signals were found only in normal brain cells but212

not in the cancer line SK-N-SH RA. Second, in astrocytes (NH-A), the SNP over-213

lapped a local region with strong H3K27ac signals (Figure 3c iv), which suggests214

that the region could be an active enhancer in this cell type. Third, the SNP was215

inside a region with strong evolutionary conservation among placental mammals216

and among vertebrates (Figure 3c v), suggesting that the region is under evolu-217

tionary constraints. Finally, there was active binding of CTCF, RAD21 and YY1218

in a nearby region a few kilobases away (Figure 3c vi) with corresponding open219

chromatin signals. Given the closeness of this region and the susceptibility locus, it220

may be useful to include this region into the study.221

The second set of genetic variants comes from the Personal Genome Project [8]222

(https://my.pgp-hms.org/). We randomly downloaded 5 lists of genetic variants223

with at least one variant reported to have high clinical importance according to the224

report on the Web site (Table 4). We tested if we could identify these variants of225

potential clinical importance using VAS, by annotating them with the information226

from GWAS Catalog [35] and the Human Gene Mutation Database [32]. On average,227

uploading and completing the annotation of each data file took less than 10 minutes.228

VAS was able to annotate all 21 unique variants reported to be likely pathogenic229

and rare pathogenic using the information from the two databases, which confirms230

that VAS can be used to quickly integrate information from diverse sources for more231

in-depth downstream analyses.232

Data uploading and integration time233

To test the speed performance of VAS in handling large data files, we recorded234

the time required to integrate 6.4 million genetic variants present in the CEU trio235

obtained from the 1000 Genomes Project with the information of the whole list of236

SNPs in dbSNP. We compared the performance of VAS with both the reported re-237

sults and our local execution of GEMINI [26], a tool that allows large-scale genomic238

data integration by means of local execution and pre-caching of table join results.239
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Both VAS and our local execution of GEMINI were tested on a machine with dual240

quad core Xeon CPU at 2.4GHz and 64GB of main memory.241

The resulting time measurements of the two tools (Table 5) show that VAS finished242

the data integration in around half an hour. As for GEMINI, although our time243

measurements are different from those reported in the original paper due to the use244

of different machines, in general a long data loading time (1.5-3 hours) was required245

for the extensive pre-computation, followed by a very quick data integration phase.246

This pre-computation step needs to be performed whenever a new set of genetic247

variants is to be annotated.248

Since GEMINI was executed locally while VAS is an online system, there was249

extra data uploading time for VAS. For the data set tested, the data uploading time250

was negligible as compared to the time needed for data integration. This result is251

consistent with our above analysis on file size and data uploading time at different252

numbers of input genetic variants (Figure 2).253

Overall, VAS is more efficient and flexible in handling new variant lists since it254

does not require pre-loading of data, while GEMINI works better in situations where255

the same list of genetic variants is to be repeatedly analyzed by integrating with256

many different subsets of genomic data.257

Conclusion258

In this paper, we have described VAS, a new Web tool that can efficiently integrate259

millions of genetic variants with tens of whole-genome data sets in a single inte-260

gration task. The client-side data compression procedure and the customized data261

store allowed fast uploading and integrating whole lists of genetic variants obtained262

from genomic studies, making VAS a practical tool for routine first-step annotation263

of genetic variants.264

When analyzing large-scale genomic data, the main bottleneck is usually inspect-265

ing long lists of results, pinpointing the most biologically or medically significant266

parts, and making correct interpretations of them. The time spent on data inte-267

gration is usually relatively unimportant. However, the time difference between a268

standard data integration method and a customized one could become large when269

the numbers of input genetic variants and integrating genomic features are large. In270

addition, since VAS can accept multiple job requests from different users simultane-271
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ously, having an efficient data integration method can also shorten the time spent272

on waiting for other earlier jobs in the queue to complete.273

Currently VAS supports job-level parallelization, which means multiple jobs can274

be run at the same time in parallel on different computing units. In the future, we275

plan to extend VAS to support sub-job-level parallelization, which means a single276

job can be divided into sub-tasks simultaneously performed on different computing277

units. As the integration of each genetic variant is independent of the other variants,278

high-level distributed computing frameworks such as MapReduce should be readily279

applicable. An additional advantage of adopting such a framework is the distribution280

of data to multiple machines, which allows for better scalability.281

VAS is currently implemented as an online system, which enjoys the advantage282

of requiring no local installation or downloading of genomic features by the user.283

We have ensured data integrity and confidentiality by providing encrypted network284

connections and assigning task IDs that are only made known to the users who285

submit the tasks. However, there are situations in which some private data can286

only be analyzed locally. Theoretically a user can install a local version of VAS on287

his/her own machine to perform the analysis offline, but that would also require288

downloading a large amount of stored data features. We will investigate ways to289

facilitate data integration in these situations, such as allowing users to easily down-290

load a selected subset of features or dynamically download data features at the time291

needed, and developing privacy-preserving distributed data integration algorithms.292

In the case study we have demonstrated that with the data currently loaded into293

VAS, one could already use it to obtain some interesting patterns around each294

genetic variant. As more and more cell/tissue-specific data are being produced,295

we will keep updating the data repository of VAS to cover more cell/tissue types296

and more data for each cell/tissue type. We also plan on supporting the GRCh38297

human reference genome when most data files in our database have a CRCh38298

version available.299

Availability and requirements300

Project name: Variant Annotation System (VAS)301

Project home page: https://yiplab.cse.cuhk.edu.hk/vas/302
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Operating system: VAS can be accessed from any platform by using one of the303

listed Web browsers304

Programming languages: PHP, Python305

Other requirements: We recommend accessing VAS by using Google Chrome306

(version 35 or higher), Microsoft Internet Explorer (version 10 or higher), or Mozilla307

Firefox (version 24 or higher), with JavaScript enabled and a minimum screen res-308

olution of 1024 pixels x 768 pixels309

Any restrictions to use by non-academics: Nil310
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Alexander, Bertram Muller-Myhsok, Stefan Schreiber, Thomas Meitinger, Heinz Erich Wichmann, Arpo338

Aromaa, Johan G Eriksson, Bryan J Traynor, Daniah Trabzuni, ”North American Brain Expression339

Consortium”, ”UK Brain Expression Consortium”, Elizabeth Rossin, Kasper Lage, Suzanne B R Jacobs,340

J Raphael Gibbs, Ewan Birney, Jaakko Kaprio, Brenda W Penninx, Dorret I Boomsma, Cornelia van Duijn, Olli341

Raitakari, Marjo-Riitta Jarvelin, John-Anker Zwart, Lynn Cherkas, David P Strachan, Christian Kubisch,342

Michel D Ferrari, Arn M J M van den Maagdenberg, Martin Dichgans, Maija Wessman, George Davey Smith,343

Kari Stefansson, Mark J Daly, Dale R Nyholt, Daniel I Chasman, and Aarno Palotie. Genome-wide344

meta-analysis identifies new susceptibility loci for migraine. Nature Genetics, 45(8):912–917, 2013.345



Ho et al. Page 13 of 17

3. Maxim Barrenboim and Thomas Manke. ChroMoS: An integrated web tool for SNP classification, prioritization346

and functional interpretation. Bioinformatics, 29(17):2197–2198, 2013.347

4. Gary Benson. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research,348

27:573–580, 1999.349

5. Bradley E Bernstein, John A Stamatoyannopoulos, Joseph F Costello, Bing Ren, Aleksandar Milosavljevic,350

Alexander Meissner, Manolis Kellis, Marco A Marra, Arthur L Beaudet, Joseph R Ecker, Peggy J Farnham,351

Martin Hirst, Eric S Lander, Tarjei S Mikkelsen, and James A Thomson. The NIH roadmap epigenomics352

mapping consortium. Nature Biotechnology, 28(10):1045–1048, 2010.353

6. Alan P Boyle, Eurie L Hong, Manoj Hariharan, Yong Cheng, Marc A Schaub, Maya Kasowski, Konrad J354

Karczewski, Julie Park, Benjamin C Hitz, Shuai Weng, J Michael Cherry, and Michael Snyder. Annotation of355

functional variation in personal genomes using RegulomeDB. Genome Research, 22:1790–1797, 2012.356

7. Yu-Chang Cheng, Fang-Chih Hsiao, Erh-Chan Yeh, Wan-Jia Lin, Cheng-Yang Louis Tang, Huan-Chin Tseng,357

Hsing-Tsung Wu, Chuan-Kun Liu, Chih-Cheng Chen, Yuan-Tsong Chen, and Adam Yao. VarioWatch:358

Providing large-scale and comprehensive annotations on human genomic variants in the next generation359

sequencing era. Nucleic Acids Research, 40:W76–W81, 2012.360

8. G M Church. The personal genome project. Molecular Systems Biology, 1(2005.0030), 2005.361

9. Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan Wang, Susan J Land,362

Douglas M Ruden, and Xiangyi Lu. A program for annotating and predicting the effects of single nucleotide363

polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly,364

6(2):80–92, 2012.365

10. Sergio Contrino, Richard N. Smith, Daniela Butano, Adrian Carr, Fengyuan Hu, Rachel Lyne, Kim Rutherford,366

Alex Kalderimis, Julie Sullivan, Seth Carbon, Ellen T. Kephart, Paul Lloyd, E. O. Stinson, Nicole L.367

Washington, Marc D. Perry, Peter Ruzanov, Zheng Zha, Suzanna E. Lewis, Lincoln D. Stein, and Gos Micklem.368

modMine: Flexible access to modENCODE data. Nucleic Acids Research, 40:D1082–D1088, 2012.369

11. Gregory M. Cooper and Jay Shendure. Needles in stacks of needles: Finding disease-causal variants in a wealth370

of genomic data. Nature Reviews Genetics, 12(9):628–640, 2011.371
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Figures462

Figure 1 Schematic illustration of the VAS workflow. Genomic features are pre-sorted and stored

in data files with pointers for direct access to particular genomic locations. A user supplies the list

of genetic variants and selects the genomic features to integrate with the variants at the client

side. The variants extractor produces a compressed form of the input variants. The task is then

sent to the backend and put into a waiting queue, and the user is shown a waiting page. When an

execution daemon becomes available, it fetches the next task in the queue and uses the

customized algorithms to perform data integration. The integration results are stored in a

tab-delimited file. The user will then be shown a summary page of the integration results. An

email notification will also be sent, with a link for a user to retrieve the summary page later. The

user can then view the integration details of each input variant, perform interactive analysis on

the UCSC Genome Browser, or download the annotation results in tab-delimited or Excel format.

Figure 2 Amount of data upload and uploading time required at various sizes of the input list of

genetic variants in our simulation study, before and after client-side data compression. The data

uploading time for the uncompressed case was estimated based on the file size and the data

transfer rate when transferring the compressed version of the same files.

Figure 3 Usage of VAS. (a) Selecting genomic features to be integrated with the genetic

variants. (b) Summary of the annotation results. Genomic features identified around each genetic

variant (within a 10kb window in this case) are shown, where a darker color indicates a stronger

signal value. (c) Detailed view of a genetic variant, with an embedded UCSC Genome Browser

image in which each genomic feature is shown as a signal track.

Figure 4 An example of point-to-region data integration using our algorithm.

Figure 5 An example of region-to-region data integration using our algorithm.
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Tables463

Table 1 List of genomic features provided by VAS

Type Genomic features

Chromatin ENCODE open chromatin, histone modifications, protein-DNA bind-

ing [13], Roadmap Epigenomics DNA methylation [5]

Genomic states ChromHMM segmentation [14], supervised genomic region classifica-

tion [36]

Expression ENCODE RNA-seq [13]

Sequence UCSC [19] conservation scores [31, 27], transcription factor binding mo-

tifs [24], sequence uniqueness [12], repeats[4], GC content

Annotation Gencode [17]

Variations dbSNP [30]

Diseases GWAS Catalog [35], The Human Gene Mutation Database [32]

Table 2 Data integration time of different methods. For BigBed reader and interval tree, we used the

implementation of bxpython. For relational database, we tried several indexing methods including

standard B-tree index and spatial index, and report here the shortest time among these approaches.

Tabix was called using the pytabix library in Python.

Method Integrating variant locations (second) Integration variant flanking windows

(second)

BigBed 277.90 275.63

Interval tree 0.41 0.60

Relational database 8.05 736.23

Tabix 8.87 8.88

Our algorithms 0.21 0.52

Table 3 Some distinctive features of VAS as compared to some related tools. For GWAVA and

RegulomeDB, the maximum number of input variants allowed is based on our own tests of the

system. Properties of the tools are based on their versions on 8th September 2014.

Tool CADD [21] GEMINI [26] GWASdb [23] GWAVA [28] HaploReg [34] RegulomeDB [6] VAS

Client-side data compression No (local) N/A No No No Yes

Input variants allowed ∼100,000 (Unlimited) 1 >10,000 10,000 ∼5,000 3,000,000

Genomic features/aggregated 63 (User defined) 37 14 10 1,012 1,000+

features provided (5 categories) (6 categories) (13 categories) (16 categories)

Data storage and integration (Not described) Relational DB Relational DB (Not described) Relational DB Relational DB Customized

Searching flanking regions No No Yes No No No Yes

Asynchronous access of results Yes (local) No No No No Yes

Linkout to genome browser No No UCSC [19] Ensembl [15] No UCSC UCSC
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Table 4 Lists of genetic variants from the Personal Genome Project tested on VAS. The variants

listed in the “PGP variants” column include likely pathogenic and rare (<2.5%) pathogenic variants

according to the reports available on the Personal Genome Project Web site. The information in the

“Chromosomal location”, “dbSNP ID” and “Clinical importance” columns was all obtained from

these reports.

Sample Total number of variants PGP variants Chromosomal location dbSNP ID Clinical importance Found by VAS

hu47A9D1 960,613 APOA5-S19W chr11:116662407/chr11:116167616 rs3135506 Low Yes

APOE-C130R chr19:45411941/chr19:50103780 rs429358 High Yes

MBL2-G54D chr10:54531235/chr10:54201240 rs1800450 Low Yes

MBL2-R52C chr10:54531242/chr10:54201247 rs5030737 Low Yes

MTRR-I49M chr5:7870973/chr5:7923972 rs1801394 Low Yes

MYO7A-R302H chr11:76869378/chr11:76547025 rs41298135 High Yes

rs5186 chr3:148459988/chr3:149942677 rs5186 Low Yes

hu7DA960 960,613 AMPD1-Q12X chr11:115236057/chr11:115037579 rs17602729 Low Yes

KCNE1-D85N chr21:35821680/chr21:34743549 N/A High Yes

KRT5-G138E chr12:52913668/chr12:51199934 rs11170164 Low Yes

MBL2-G54D chr10:54531235/chr10:54201240 rs1800450 Low Yes

rs5186 chr3:148459988/chr3:149942677 rs5186 Low Yes

hu8D40D6 598,897 APOE-C130R chr19:45411941/chr19:50103780 rs429358 High Yes

HFE-S65C chr6:26091185 N/A Low Yes

MTRR-I49M chr5:7870973/chr5:7923972 rs1801394 Low Yes

PRPH-D141Y chr12:49689404 rs58599399 High Yes

RPF1-A91V chr10:72360387/chr10:72030392 rs35947132 Low Yes

SERPINA1-E288V chr14:94847262/chr14:93917014 rs17580 Low Yes

hu998A3D 960,613 BTD-D444H chr3:15686693/chr3:15661696 rs13078881 Low Yes

C3-R102G chr19:6718387/chr19:6669386 rs2230199 Moderate Yes

COL4A1-Q1334H chr13:110818598/chr13:109616598 rs3742207 Low Yes

HFE-S65C chr6:26091185 N/A Low Yes

MTRR-I49M chr5:7870973/chr5:7923972 rs1801394 Low Yes

rs5186 chr3:148459988/chr3:149942677 rs5186 Low Yes

SERPINA1-E366K chr14:94844947/chr14:93914699 rs28929474 High Yes

hgD53911 612,647 COL4A1-Q1334H chr13:110818598/chr13:109616598 rs3742207 Low Yes

MTRR-I49M chr5:7870973/chr5:7923972 rs1801394 Low Yes

PKD1-R4276W chr16:2139814/chr16:2079814 rs114251396 High Yes

rs5186 chr3:148459988/chr3:149942677 rs5186 Low Yes

SCNN1G-E197K chr16:23200963/chr16:23108463 rs5738 Low Yes

VWF-R854Q chr12:6143978/chr12:6014238 rs41276738 Moderate Yes

Table 5 Time measurement of GEMINI and VAS

Tool Data loading/uploading (s)* Data integration (s) Total (s)

GEMINI (as reported in [26]) Average 5,050.0 24.0 5,064.0

GEMINI (our testing results) Trial 1 9,944.6 154.1 10,098.6

Trial 2 9,960.5 155.5 10,116.1

Trial 3 10,182.4 156.9 10,339.3

Trial 4 10,182.3 162.8 10,345.1

Trial 5 10,053.2 169.1 10,222.2

Average 10,064.6 159.7 10,224.3

Std. dev. 115.2 6.2 117.6

VAS Trial 1 9.9 1,711.1 1,721.1

Trial 2 10.4 1,772.3 1,782.7

Trial 3 9.7 1,552.5 1,562.1

Trial 4 9.2 1,541.6 1,550.8

Trial 5 9.6 1,580.9 1,590.5

Average 9.8 1,631.7 1,641.4

Std. dev. 0.4 103.7 104.1


