
Metric and Trigonometric Pruning for Clustering of

Uncertain Data in 2D Geometric Space

Wang Kay Ngaia, Ben Kao∗,a, Reynold Chenga, Michael Chaub,
Sau Dan Leea, David W. Cheunga, Kevin Y. Yipc,d

aDepartment of Computer Science, The University of Hong Kong, Hong Kong
bSchool of Business, The University of Hong Kong, Hong Kong

cDepartment of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong

dDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven,
Connecticut, USA

Abstract

We study the problem of clustering data objects with location uncertainty. In
our model, a data object is represented by an uncertainty region over which
a probability density function (pdf) is defined. One method to cluster such
uncertain objects is to apply the UK-means algorithm [1], an extension of
the traditional K-means algorithm, which assigns each object to the cluster
whose representative has the smallest expected distance from it. For arbitrary
pdf, calculating the expected distance between an object and a cluster rep-
resentative requires expensive integration of the pdf. We study two pruning
methods: pre-computation (PC) and cluster shift (CS) that can significantly
reduce the number of integrations computed. Both pruning methods rely on
good bounding techniques. We propose and evaluate two such techniques
that are based on metric properties (Met) and trigonometry (Tri). Our ex-
perimental results show that Tri offers a very high pruning power. In some
cases, more than 99.9% of the expected distance calculations are pruned.
This results in a very efficient clustering algorithm.1

∗Corresponding author
Email addresses: wkngai@cs.hku.hk (Wang Kay Ngai), kao@cs.hku.hk (Ben Kao),

ckcheng@cs.hku.hk (Reynold Cheng), mchau@business.hku.hk (Michael Chau),
sdlee@cs.hku.hk (Sau Dan Lee), dcheung@cs.hku.hk (David W. Cheung),
kevinyip@cse.cuhk.edu.hk (Kevin Y. Yip)

1Part of this paper appears in Ngai et al., 2006 [2], in which the algorithms PC and

Preprint submitted to Information Systems August 19, 2010

Key words: Clustering, data uncertainty

1. Introduction

Clustering is a technique that has been widely studied and used in real
applications. Many efficient algorithms, including the well-known and widely
applied K-means algorithm, have been devised to solve the clustering problem
efficiently. Traditionally, clustering algorithms deal with a set of objects
whose positions are accurately known, and do not address situations in which
object locations are uncertain. Data uncertainty is, however, inherent in
many real-life applications due to factors such as the random nature of the
physical data generation and collection processes, measurement errors, and
data staling. Recent works (e.g., [3, 4, 5]) have also suggested to protect
location privacy by lowering the precision of a user’s location, which poses
problems for traditional clustering algorithms.

In this paper we study the problem of clustering spatial objects with
location uncertainty. In our model, an object’s location is represented by a
spatial probability density function (pdf). Our objective is to study the com-
putational issues in adapting the traditional K-means algorithm to clustering
uncertain objects, and to devise efficient algorithms for solving the clustering
problem.

As a motivating example, let us consider the problem of clustering mobile
devices. In many wireless network applications, mobile devices report their
locations periodically to a remote server [6]. Each device can make low-
power short-ranged communication to neighboring devices, or high-power
long-ranged communication with the remote server directly. To reduce power
consumption, batching protocols have been proposed. Under these proto-
cols, certain devices are elected as leaders, whose job is to collect messages
from neighboring devices through short-ranged communication. The leaders
then send the collected messages in batch to the server through long-ranged
communication [7, 8] (Figure 1). By batching messages, many long-ranged
messages are replaced by short-ranged ones. The election of local leaders

CS were described. The idea of trigonometric pruning (Section 6), most of the empirical
performance study (Section 7), discussion (Section 8), and all proofs of theorems (Ap-
pendixes), have not been previously published. The new materials amount to about 3/4
of the current paper.

2

server

Leader

Member

Figure 1: Reporting locations to cluster leaders using short-ranged communication has a
much lower power consumption than making long-ranged communication with the server
directly.

can be formulated as a clustering problem. The goal is to minimize the
distance between every device and its corresponding local leader. This clus-
tering problem differs from the traditional setting in the existence of data
uncertainty:

• The physical instruments used for determining the device locations are
accurate only up to a certain precision.

• The current locations of the mobile devices can only be estimated based
on their last reported values, i.e., the data are always stale. Other
practical problems, such as packet loss, could also increase the degree
of uncertainty.

• Data uncertainty may also be introduced by the user to protect his
location privacy. Particularly, the idea of location cloaking has been
investigated [4, 5], where the actual location of a user is converted to
a larger region, before it is sent to the service provider.

Due to uncertainty, the whereabouts of a mobile device can only be es-
timated by imposing an uncertainty model on its last reported location [9].
A typical uncertainty model requires knowledge about the moving speed of
the device and whether its movement is restricted (such as a car moving in
a road network) or unrestricted (such as a tracking device mounted on an

3

animal moving on plains). Typically, a 2D probability density function is
defined over a bounded region to model such uncertainty.

Let us now formally define our uncertain data clustering problem. We
consider a set of n objects oi (1 ≤ i ≤ n) in a 2-dimensional space. Each
object oi is represented by a probability density function (pdf) fi : IR2 → IR
that specifies the probability density of each possible location of the object.
The goal is to partition the objects into k clusters, such that each object oi

is assigned to a cluster ci and that oi is close to a cluster representative point
pci

of ci. To measure closeness, we define a distance function between an
uncertain object and a cluster representative point as the expected distance
between them:

ED(oi, pci
) =

∫
fi(x)d(x, pci

)dx, (1)

where d is the Euclidean distance and the integration is taken over the un-
certainty region (which is assumed to be bounded, as we will discuss below)
in which the pdf integrates to one. Given a cluster ci, its representative pci

is given by the mean of the centers of mass of all the objects assigned to ci.
The clustering goal is then to find ci’s (and thus pci

’s) such that the following
objective function is minimized:

G =
n∑

i=1

ED(oi, pci
) =

n∑
i=1

∫
fi(x)d(x, pci

)dx. (2)

We assume that the pdf’s can take any arbitrary form, which is impor-
tant when the possible locations of a device are constrained by its dynamic
environment, such as the road structure. The only additional requirement
we impose on the pdf’s is that each of them should integrate to one within
a bounded region. This is a reasonable requirement for many applications.
For example, the current location of a mobile device is restricted by its last
reported location, its maximum speed, and the duration between two loca-
tion reports [10, 11]. In location cloaking, the actual coordinates of a user’s
location were replaced by a uniform distribution over a bounded region [4, 5].

In a separate study [1], it was shown that the quality of clustering results
could be improved by explicitly considering data uncertainty. An algorithm
called UK-means (Uncertain K-means) was proposed to take data uncertainty
into account during the clustering process. Experimental results showed

4

that UK-means consistently produced better clusters than the traditional
K-means algorithm. Yet for arbitrary pdf’s, expected distance calculations
require costly numerical integrations. A straightforward implementation of
UK-means for arbitrary pdf’s would require a lot of such expected distance
calculations, which are computationally impractical.

In this paper we study two pruning algorithms, namely pre-computation
(PC) and cluster-shift (CS), which can significantly reduce the number of
expected distance calculations of UK-means. The effectiveness of both algo-
rithms relies on good bounds of expected distances. We propose and eval-
uate two bounding techniques that are based on metric properties (Met)
and trigonometry (Tri). Met bounds are derived using the triangle inequal-
ity, and Tri bounds are obtained by a number of trigonometric rules. Our
experimental results show that while the simple (Met) bounds are already
powerful in pruning expected distance calculations, the more advanced Tri

bounds provide further pruning power. In some of our experiments, more
than 99.9% of the expected distance calculations are pruned. This results in
a very efficient clustering algorithm.

The rest of this paper is organized as follows. Section 2 describes some
related work on uncertain data mining in general and uncertain data cluster-
ing in particular. Section 3 describes the UK-means algorithm. We explain
the performance bottleneck in UK-means and introduce a generic pruning
framework for reducing the number of expected distance calculations. Based
on this framework, we propose and analyze a number of pruning algorithms.
In Section 4 we first describe a simple pruning algorithm that uses the idea
of minimum bounding rectangles (MBRs). In Section 5, we introduce two
pruning algorithms PC and CS. We will show that the effectiveness of these
pruning algorithms relies heavily on the tightness of the lower and upper
bounds of the expected distances. A major portion of this paper is thus ded-
icated to the study of such bounding techniques. Section 5 discusses the Met

bounds, which are derived from the triangle inequality. Section 6 discusses
the Tri bounds, which are derived from trigonometric rules. In Section 7 we
evaluate the effectiveness of the various methods by extensive experiments.
Section 8 discusses some observations and potential future developments,
and Section 9 concludes the paper. Finally, the appendixes contain detailed
mathematical proofs of our theorems.

Before we end this section, we remark that although we focus on 2D spaces
(such as those related to geographical and location-based applications), our
pruning algorithms and bounding techniques are theoretically applicable to

5

high-dimensional spaces as well. In particular, all the mathematical proofs
of our theorems can be extended to high-dimensional spaces. The compu-
tational overheads incurred in the pruning methods, however, are higher in
higher dimensional spaces.

2. Related work

There has been significant research interest in uncertain data management
in recent years. Data uncertainty has been broadly classified into existential
uncertainty and value uncertainty. Existential uncertainty appears when it is
uncertain whether an object or a data tuple exists. For example, a data tuple
in a relational database could be associated with a probability that represents
the confidence of its presence [12, 13]. Value uncertainty, on the other hand,
appears when a tuple is known to exist, but its values are not known precisely.
A data item with value uncertainty is usually represented by a pdf over a
finite and bounded region of possible values [1, 10, 11, 14, 15, 16]. In this
paper we study the problem of clustering objects with value uncertainty.

There has been growing interest in uncertain data mining. In [1], the well-
known K-means clustering algorithm is extended to the UK-means algorithm
for clustering uncertain data. In that study, it is empirically shown that clus-
tering results are improved if data uncertainty is taken into account during
the clustering process. One caveat of the approach is the costly computation
of numeric integration. To improve the performance of UK-means, pruning
techniques have been proposed. Examples include min-max-dist pruning [2],
CK-means [17], and Voronoi-diagram-based methods [18]. Our methods are
similar to those of min-max-dist pruning [2] in that they all attempt to es-
timate bounds of expected distances (see Equation 1), which are then used
to prune unnecessary integrations. The difference is that we apply trigono-
metric rules in bound estimations. As we will show later, our methods result
in much tighter bounds and hence much more effective pruning algorithms.
A recent publication has reported advancements on the topic of MBR-based
pruning [19]. Our problem setting represents a special case of their general
model. In this degenerate case, though, their proposed new technique re-
duces back to min-max-dist pruning, and hence cannot be applied to our
problem to improve the pruning effectiveness2.

2Please refer to Section 5 and Figures 8–10 of [19].

6

Voronoi-diagram-based (VD-based) clustering algorithms [18] represent a
very different approach. Under VD-based algorithms, a Voronoi diagram of
the cluster representatives is first constructed. The algorithms then check
whether an uncertain object o’s MBR lies entirely within a Voronoi cell c. If
so, the cluster representative that corresponds to cell c must be the closest
one to object o. Hence o is assigned to that cluster without computing
any expected distances. We will briefly compare and contrast the VD-based
approach and our bounding approach in Section 8.2.

Apart from studies in partition-based uncertain data clustering, other
directions in uncertain data mining include density-based clustering (e.g.,
FDBSCAN [20]), frequent itemset mining [21] and density-based classifica-
tion [22]. For density-based clustering, two well-known algorithms, namely,
DBSCAN [23] and OPTICS [24] have been extended to handle uncertain
data. The corresponding algorithms are called FDBSCAN [20] and FOP-
TICS [25], respectively. In DBSCAN, the concepts of core objects and reach-
ability are defined. Clusters are then formed based on these concepts. In
FDBSCAN, the concepts are re-defined to handle uncertain data. For ex-
ample, under FDBSCAN, an object o is a core object if the probability that
there is a “good number” of other objects that are close to o exceeds a cer-
tain probability threshold. Also, whether an object y is “reachable” from
another object x depends on both the probability of y being close to x and
the probability that x is a core object. FOPTICS takes a similar approach
of using probabilities to modify the OPTICS algorithm to cluster uncertain
data.

Subspace clustering [26] is a special kind of density-based clustering where
clusters are hidden in (unknown) low-dimensional subspaces. The study
in [27] extends the subspace clustering method in [28] to handle uncertain
data using expected distances.

Other formulations of the clustering problem have also been studied.
In [29] and [30], data uncertainty is represented by value intervals. Different
distance measures, such as city-block distance and Minkowski distance, are
extended to handle interval data. In [22], each uncertain object is modeled
by a kernel function that estimates its errors. The average of the kernel func-
tion values of all the objects at any given point gives the data density at that
point. An algorithm was proposed for using such data densities to solve the
classification problem of uncertain data.

Clustering of uncertain data is also related to fuzzy clustering, which
has long been studied in fuzzy logic [31]. In fuzzy clustering, a cluster is

7

represented by a fuzzy subset of objects. Each object has a “degree of be-
longingness” with respect to each cluster. The fuzzy c-means algorithm is
one of the most widely used fuzzy clustering methods [32, 33]. Different fuzzy
clustering methods have been applied on normal or fuzzy data to produce
fuzzy clusters [34, 35]. A major difference between the clustering problem
studied in this paper and fuzzy clustering is that we focus on hard clustering,
for which each object belongs to exactly one cluster. Our formulation targets
for applications such as mobile device clustering, in which each device should
report its location to exactly one cluster leader.

3. The basic UK-means algorithm and Min-max-dist pruning

The problem of clustering uncertain data was first addressed in [1] where
the UK-means algorithm was proposed. An objective of the paper was to
study whether cluster quality could be improved by considering data uncer-
tainty. The efficiency of UK-means was a secondary issue. In [2], it is shown
that UK-means can be very inefficient. Min-max-dist pruning was proposed
to significantly reduce clustering time. In this section, we review the basic
UK-means algorithm and the min-max-dist pruning approach.

As the name suggests, UK-means is similar to the iterative K-means al-
gorithm, which was designed for clustering conventional point data [36]. To
form k clusters, UK-means starts by randomly selecting k points as initial
cluster representatives. Each object oi is then assigned to the cluster whose
representative pj has the smallest expected distance from oi (ED(oi , pj))
among all clusters. After the assignment, cluster representatives are recom-
puted as the mean of the centers of mass of the assigned objects. The two
steps form an iteration, which is repeated until the convergence of an objec-
tive score. Figure 2 shows the pseudocode of UK-means.

The most time-consuming step of UK-means is line 7, where an expected
distance (ED(oi, pj) =

∫
fi(x)d(x, pj)dx) is calculated for each pair of object

oi and cluster representative pj. Since cluster representatives shift from one
iteration to another, the expected distances have to be recalculated in each
iteration. With arbitrary pdf (fi()), the integration has to be computed nu-
merically by sampling values of f(x) at different points x within the bounded
uncertainty region of oi, and computing the distance d(x, pj). To get an accu-
rate estimate of the integrals, a large number of sample points x are required,
making expected distance calculation an expensive operation. Suppose the
algorithm runs for t iterations before convergence, a brute force implementa-

8

Algorithm UK-means (k: target no. of clusters)
1 for j = 1 to k do
2 pj = random point()
3 new obj score = ∞
4 do {
5 obj score = new obj score
6 for i = 1 to n do // Assignment
7 ci = arg mink

j=1 ED(oi, pj)
8 for j = 1 to k do // Re-computing representatives
9 pj = 1

|{oi:ci=j}|
∑

oi:ci=j(
∫

xfi(x)dx)

10 new obj score =
∑n

i=1 ED(oi, pci
)

11 }
12 while (|obj score− new obj score| > stopping threshold)
End

Figure 2: The UK-means algorithm.

tion of the UK-means algorithm requires nkt expected distance calculations,
which make the algorithm impractical when the total number of objects n
is large. The integration in line 9 computes the centers of mass of objects.
These centers need to be computed only once for the whole clustering process
since they remain unchanged. The cost is thus relatively insignificant.

Is it possible to reduce the number of expected distance calculations with-
out altering the clustering results? An idea is to use inexpensive distance
calculations between some exact points with no uncertainty to setup lower
and upper bounds of the expected distance between each object and each
cluster representative, so that some representatives can be identified as not
the closest one to an object without computing the exact expected distance
between them.

Given two cluster representatives pj and pr, if a lower bound of ED(oi , pj)
is larger than an upper bound of ED(oi , pr), then pj is guaranteed not the
closest cluster representative of oi. In other words, the expensive expected
distance calculation of ED(oi , pj) can be pruned.

More specifically, for each object oi and each cluster representative pj, we
use a method (to be described in the coming sections) to derive a lower bound
MinDist ij and an upper bound MaxDist ij of ED(oi , pj). Among all the upper
bounds of oi with respect to different cluster representatives, the smallest one

9

is called the min-max distance MinMaxDist i = minj MaxDist ij. Let pr be
a cluster representative with the smallest upper bound (i.e., MaxDist ir =
MinMaxDist i). Any cluster representative pj with MinDist ij larger than
MinMaxDist i cannot be the one closest to oi, since

ED(oi, pj) ≥ MinDist ij

> MinMaxDist i

= MaxDist ir

≥ ED(oi, pr), (3)

Thus, the expected distances between oi and all pj’s such that MinDist ij >
MinMaxDist i are pruned.

If there are two or more cluster representatives that cannot be pruned,
their exact expected distances from object oi are computed in order to deter-
mine which one is the closest. We call the whole procedure the Min-max-dist
pruning method. The effectiveness of the pruning method depends on the
tightness of the bounds MinDist ij and MaxDist ij as well as the overhead
incurred by the computation of them. In the coming sections, we will discuss
ways to obtain such bounds.

4. MBR-based bounds on expected distances

A simple method to obtain lower and upper bounds of the expected dis-
tance ED(oi, pj) is to make use of a minimum bounding rectangle (MBR). For
each object oi, we define an MBR that covers the whole bounded uncertainty
region of it. For each cluster representative pj, we compute the minimum
and maximum distances between pj and the MBR of oi (Figure 3(a)). These
distances can be easily computed by simple geometry. It is obvious that
such minimum and maximum distances are also lower and upper bounds of
ED(oi, pj) and thus can be used as MinDist ij and MaxDist ij, respectively.
For instance, if the minimum distance is dij, then

ED(oi, pj) =
∫

fi(x)d(x, pj)dx

≥
∫

fi(x)dijdx

= dij

∫
fi(x)dx

= dij.

10

p1

oi
p2

p3

1

6
5

11

7
14

(a) An object with a relatively
small uncertainty region.

p1

oi
p2

p3

1

8

5

13

6

14

(b) An object with a relatively
large uncertainty region.

Figure 3: Minimum and maximum distances for the Min-max-dist pruning method.

For example, in Figure 3(a), we have MinDist i1 = 1, MinDist i2 = 5,
MinDist i3 = 7, MaxDist i1 = 6, MaxDist i2 = 11 and MaxDisti3 = 14. Since
p1 gives the smallest maximum distance, we have the min-max distance
MinMaxDist i = MaxDist i1 = 6. Then, as MinDist i3 = 7, which is larger
than MinMaxDist i = 6, p3 cannot be the cluster representative closest to oi

and thus the expected distance ED(oi, p3) needs not be computed.
The method is effective in saving expected distance calculations of cluster

representatives that are much farther away from the closest one. However,
it suffers when the MBR gives poor distance bounds. This occurs when
the uncertainty region of an object is large relative to the difference in ex-
pected distances from the different cluster representatives. For example, in
Figure 3(b), the maximum distance of p1 is increased to 8 due to a larger
uncertainty region. The min-max distance MinMaxDist i, now being 8, is no
longer smaller than MinDist i3. Therefore p3 cannot be pruned and ED(oi, p3)
needs to be computed.

In the coming sections, we will discuss ways to tighten the bounds MinDist
and MaxDist in order to achieve more effective pruning.

5. Metric bounds on expected distances

In this section we describe two bounding methods based on the triangle
inequality, which takes two forms:

For any three points x, y and z, we have,

d(x, y) ≤ d(x, z) + d(z, y), and

d(x, y) ≥ |d(y, z)− d(x, z)|.

11

We now introduce two pruning methods that make use of the bounds derived
from the triangle inequality.

5.1. The pre-computation (PC) method

Our first approach is to pre-compute some expected distances and uti-
lize the triangle inequality to obtain better bounds. A similar idea applied
to hierarchical clustering on data without uncertainty was proposed in [37].
Suppose that before the clustering process starts, we pick, for each object
oi, a fixed anchor point y in the object space and pre-compute the expected
distance ED(oi, y). By using the triangle inequality, we can derive the fol-
lowing upper bound on the expected distance between object oi and a cluster
representative pj in terms of y:

ED(oi, pj) =
∫

fi(x)d(x, pj)dx

≤
∫

fi(x)[d(x, y) + d(y, pj)]dx

= ED(oi, y) + d(y, pj). (4)

Since ED(oi, y) is pre-computed, the upper bound can be computed by an
inexpensive distance calculation of d(y, pj). One can then compare the bound
obtained from Inequality 4 with the bound obtained from the MBR method
and use the smaller (i.e., tighter) one of the two as MaxDist ij. This will
guarantee a pruning effectiveness not worse than that of the MBR method.

Similarly, a lower bound on ED(oi, pj) can be derived:

ED(oi, pj) =
∫

fi(x)d(x, pj)dx

≥
∫

fi(x)|d(y, pj)− d(x, y)|dx

≥ |
∫

fi(x)[d(y, pj)− d(x, y)]dx|

= |d(y, pj)− ED(oi, y)|. (5)

Again, this lower bound can be compared with the one obtained from
the MBR method and the larger one is used as MinDist ij. We call the
pruning procedure based on the bounds given by Inequalities 4 and 5 the
pre-computation method, or PC for short.

An interesting issue concerning the PC method is the choice of the anchor
point y. Obviously, if y equals pj, then the bounds are tight since d(y, pj)

12

would be zero. In general, choosing an anchor point y that is close to a cluster
representative pj would result in good lower and upper bounds of ED(oi, pj).
Unfortunately, since there are k cluster representatives (pj) scattered about
in the space, it is not possible to pick an anchor point that is close to all pj’s.

To tackle the problem, let us examine the upper bound ED(oi, y)+d(y, pj)
again. Since pj is unknown in advance, a best-effort approach is to pick an
anchor point y that minimizes the first term, ED(oi, y). Doing so would also
make the inequality d(y, pj) > ED(oi, y) more likely to be true, which means
minimizing ED(oi, y) would not only attempt to tighten the upper bound,
but also simultaneously attempt to make a tighter lower bound. It is thus
important to know where can we find y that minimizes ED(oi, y). The exact
location is in general hard to obtain, but fortunately the following result
helps reduce the possible candidates.

Lemma 5.1. The anchor point y that minimizes ED(oi, y) must lie inside
the MBR of oi.

Proof. Suppose that a point y is outside the MBR of oi and y∗ is the point on
the boundary of the MBR that is closest to y. There are two possible cases,
either the line yy∗ is perpendicular to an edge of the MBR (Figure 4(a)), or
y∗ is at a corner of the MBR (Figure 4(b)). In both cases, consider any point
x inside the uncertainty region of oi, and let z be the point on the extension of
yy∗ such that xz is perpendicular to yz. If x lies on the line yy∗ (i.e., x = z),

then d(x, y) > d(x, y∗); Otherwise, d(x, y) = d(x,z)

cos 6 yxz
> d(x,z)

cos 6 y∗xz
= d(x, y∗).

Therefore in all cases, ED(oi, y) =
∫

fi(x)d(x, y)dx >
∫

fi(x)d(x, y∗)dx =
ED(oi, y

∗), which proves the lemma.

The lemma suggests that we only need to pick anchor points for an object
oi from its MBR. In general, having more points raises the chance of getting
tighter bounds, but also increases the pre-computation overhead. As we will
show later in Section 7 using our experimental results, the pruning methods
that use PC are very effective even with only a single anchor point. We will
therefore stay with the one-point scheme with the anchor point at the center
of the MBR, unless otherwise stated.

5.2. The cluster shift (CS) method

In the last section, we mentioned the difficulty of choosing an anchor point
y that minimizes the second term of the upper bound ED(oi, y) + d(y, pj)
(Inequality 4), as the location of pj is unknown in advance. Yet, if by some

13

y

y*

xz

(a)

y*

x

z

y

(b)

Figure 4: A point that minimizes its expected distance to an Object oi must lie within
the MBR of oi.

means there exists a point y such that (1) the expected distance ED(oi, y)
has already been computed and (2) y is close to pj, then y can be used to set
up good distance bounds. Such a point indeed exists naturally during the
clustering process based on the following observation.

Consider two consecutive iterations h and h + 1 in the clustering process
where the representative of cluster j shifted from point p′j to point pj. Since
cluster representatives usually shift by small distances especially in the later
iterations of the clustering process, d(p′j, pj) should be small. If ED(oi, p

′
j)

was computed in iteration h because pruning has failed to eliminate the
computation, then point p′j satisfies the two conditions mentioned above and
can be used as a good anchor point for bounding ED(oi, pj). Again, the
upper and lower bounds are derived from the triangle inequality:

ED(oi, pj) ≤ ED(oi, p
′
j) + d(pj, p

′
j), (6)

ED(oi, pj) ≥ |ED(oi, p
′
j)− d(pj, p

′
j)|. (7)

As in the case of the PC method, the bounds can be computed using
inexpensive distance calculations. We call the resulting pruning method the
Cluster Shift method, or CS for short. A similar idea was used in [38] for
speeding up the K-means algorithm when applied to conventional data.

14

Note that even if the expected distance ED(oi, p
′
j) was not computed in

iteration h, we can still apply the idea of the CS method by considering the
most recent representative p∗j of cluster j whose expected distance ED(oi, p

∗
j)

from oi has been computed. An interesting property of the CS method is
that if ED(oi, p

′
j) is not available, it means that ED(oi, p

′
j) was pruned by

the bounds using p∗j . In that case, since p′j and pj are close, if the bounds
led to the pruning of p′j, it is very likely that ED(oi, pj) can be pruned by
the bounds using p∗j as well. On the other hand, if ED(oi, p

′
j) is available, we

can use it to bound ED(oi, pj). So, either way, chances are that the expected
distance ED(oi, pj) can be pruned.

There are two main differences between the CS method and the PC
method. First, the CS method does not involve any pre-computation of
expected distances. It simply uses a previously computed result. There is
thus no extra pre-computation overhead. Second, while the anchor point y
picked for the PC method is close to the object oi, the anchor point (e.g.,
p′j) used by the CS method is close to the cluster representative pj. A down-
side of the CS method is its dependency on the dynamic clustering process,
such as whether ED(oi, p

′
j) has been previously computed and thus p′ can be

used as an anchor point, which is largely unpredictable. Another issue of the
CS method is that if the cluster representatives experience large shifts (e.g.,
during the first few iterations of the clustering process), the derived bounds
could be loose. In that case, the algorithm will automatically fall back to
those bounds obtained by the basic MBR method (Section 4).

6. Trigonometric bounds on expected distances

The triangle inequality used in the previous section is simple in bounding
the expected distances, yet the bounds are not very tight. This is because the
method only considers the distances between the anchor point y, the cluster
representative pj and the points x in the MBR of the uncertain object oi,
but not the angles between them. If we make use of these angles, we will be
able to find tighter bounds. For instance, let us take a look at Inequality 4.
The upper bound of ED(oi, pj) is given by the sum of ED(oi, y) and d(y, pj).
If the vectors xy−→ and ypj

−→ are far from parallel for most of the points x in the
MBR of oi, then ED(oi, pj) can be much smaller than ED(oi, y) + d(y, pj).
That is, the upper bound can be very loose. This problem is illustrated in
Figure 5, where pj is denoted as p in order to simplify the notation. Clearly,

15

for each point x in object oi, the distance d(x, p) can be more accurately
computed in terms of the angles α, β and γ.

In this section we describe in detail how new bounds of ED(oi, pj) can
be obtained by using trigonometry. We will show later (see Section 6.5)
that the farther away the anchor point y is from the MBR, the tighter the
bounds will be (as long as we do not lose much numerical precision). The
reason why a far-away anchor is picked is to limit the variation of the three
angles (see Figure 5). We may thus consider the trigonometric bounds being
complementary to the PC bounds discussed in Section 5, which prefer anchor
points inside the MBR.

The new bounds based on trigonometry can be used in place of those
based on the triangle inequality under both the PC method and the CS
method. For the PC method, for each object, we pick an additional anchor
point y that is far away from the object, and pre-compute the expected
distance ED(oi, y). For the CS method, we use the cluster representative
of a previous iteration whose expected distance from oi has been computed
as the anchor point. As discussed before, the different bounds can be used
together by comparing their tightness and picking the best one. We will
study the resulting pruning power and computational overhead empirically
in Section 7.

We will first identify a few identities concerning the side lengths and
angles of a triangle in Section 6.1. Then, we use these identities to derive
bounds of ED(oi, pj) in Sections 6.2–6.4. We have discovered that except in
some degenerate cases, given a fixed anchor point, the trigonometric bounds
are strictly better than those derived from the triangle inequality. This result
is formally presented in Section 6.5. Note that the trigonometric bounds
require the computation of bounds on certain trigonometric functions on the
three angles. In Appendix A, we first describe algorithms for bounding the
angles. Then in Appendix B, we show that the bounds on the trigonometric
functions can be found easily using the bounds on the angles.

Before we go into the details, let us formally introduce some notations.
First, we consider the triangle formed by the three points x, p, y. The corre-
sponding angles in the triangle are α, β, γ, respectively, where all three angles
are within [0, π]. Figure 5 illustrates such a triangle for the case where β is
obtuse3. We treat y (the anchor point) and p (any cluster representative pj)

3In this article, an angle is defined as obtuse if it is in (π/2, π].

16

MBR

x

y

p
α

γ

β

y′

p′

x′

Figure 5: Notations for Section 6

as fixed points, and x as a variable point that is confined within the MBR
of an uncertain object oi. Note that the three angles all vary with x. We
assume that x, p, y are all distinct points, so that

∥∥∥xp−→
∥∥∥, ∥∥∥xy−→

∥∥∥ and
∥∥∥yp−→

∥∥∥ are all
non-zero.

We use vector notations for our formulas and proofs. We denote the vector

that points from a to b as ab
−→

. If two vectors ab
−→

and cd
−→

are perpendicular, we

write ab
−→
⊥ cd
−→

; otherwise, we write ab
−→
6⊥ cd
−→

. For convenience, the distance

between two points a and b is written as
∥∥∥∥ab
−→∥∥∥∥ = d(a, b). The maximum (resp.

minimum) value of a quantity q is denoted as q (resp. q). So, α denotes the
minimum attainable value of angle α as x varies within the MBR of oi, and
cos α denotes the maximum attainable value of cos α, which happens to be
equal to cos α because cosine is a decreasing function in the range [0, π].

As a preview, we derive 5 types of bounds, called Cosine Bounds (COS),
Secant-A Bounds (SEC-A), Secant-B Bounds (SEC-B), Cosecant-A Bounds
(CSC-A) and Cosecant-B Bounds (CSC-B). These bounds are derived from
different trigonometry identities and they are applicable under different con-
ditions. Table 1 shows a summary of the bounds. Note that only upper
bounds are shown in the table. The corresponding lower bounds can be ob-
tained by swapping all quantities q with q in the formulae. First-time readers
might want to skip the details of the bound derivations (Sections 6.2–6.4) and
proceed to Section 6.5, where some theorems concerning the various bounds
are presented.

17

6.1. Selected Trigonometric Identities

The basic idea of bounding ED(oi, pj) is to look for identities that repre-

sent
∥∥∥xp−→

∥∥∥ in terms of
∥∥∥xy−→

∥∥∥, ∥∥∥yp−→
∥∥∥, and trigonometric functions of α, β and γ.

After taking integration, it is equivalent to representing ED(oi, pj) in terms

of ED(oi, y),
∥∥∥yp−→

∥∥∥, and trigonometric functions of α, β and γ. Since ED(oi, y)

is pre-computed and
∥∥∥yp−→

∥∥∥ can be computed easily using an inexpensive dis-
tance calculation, by bounding the values of the trigonometric functions, we
obtain bounds of ED(oi, pj).

We have identified five such identities that can be computed efficiently:

1. COS identity: ∥∥∥xp−→
∥∥∥ =

∥∥∥xy−→
∥∥∥ cos α +

∥∥∥yp−→
∥∥∥ cos β. (8)

2. SEC identities:

(a) When xy−→ 6⊥ xp−→, ∥∥∥xp−→
∥∥∥ = sec α(

∥∥∥xy−→
∥∥∥− ∥∥∥yp−→

∥∥∥ cos γ). (9)

(b) When yp−→ 6⊥ xp−→, ∥∥∥xp−→
∥∥∥ = sec β(

∥∥∥yp−→
∥∥∥− ∥∥∥xy−→

∥∥∥ cos γ). (10)

3. CSC identities: when x, p, y are not collinear,∥∥∥xp−→
∥∥∥ =

∥∥∥yp−→
∥∥∥ sin γ csc α, (11)∥∥∥xp−→

∥∥∥ =
∥∥∥xy−→

∥∥∥ sin γ csc β. (12)

Proof. The identities can be readily verified for the triangle shown in Fig-
ure 5. Here we give general proofs for all possible values of α, β and γ.

For (8),

xp−→ = xy−→+ yp−→
xp−→ · xp−→ = xp−→ · (xy−→+ yp−→)∥∥∥xp−→

∥∥∥2
= xp−→ · xy−→+ xp−→ · yp−→

=
∥∥∥xp−→

∥∥∥ ∥∥∥xy−→
∥∥∥ cos α +

∥∥∥xp−→
∥∥∥ ∥∥∥yp−→

∥∥∥ cos β∥∥∥xp−→
∥∥∥ =

∥∥∥xy−→
∥∥∥ cos α +

∥∥∥yp−→
∥∥∥ cos β.

18

Geometrically, referring to Figure 5, Equation 8 states that
∥∥∥xp−→

∥∥∥ is equal to∥∥∥∥xy′−→
+ y′p
−→∥∥∥∥, where y′ is the point on line xp so that yy′−→

⊥ xp−→.

For (9),

xp−→ = xy−→+ yp−→
xy−→ · xp−→ = xy−→ · (xy−→− py−→)∥∥∥xy−→

∥∥∥ ∥∥∥xp−→
∥∥∥ cos α =

∥∥∥xy−→
∥∥∥2
−

∥∥∥xy−→
∥∥∥ ∥∥∥py−→∥∥∥ cos γ∥∥∥xp−→

∥∥∥ = sec α(
∥∥∥xy−→

∥∥∥− ∥∥∥yp−→
∥∥∥ cos γ).

Geometrically, the equality states that
∥∥∥xp−→

∥∥∥ is equal to
∥∥∥∥xp′
−→∥∥∥∥ sec α, where p′

is the point on xy so that pp′
−→

⊥ xy−→. Equation 10 can be derived in a similar
fashion.

Equations 11 and 12 can be derived from the sine rule, which states that∥∥∥yp−→
∥∥∥

sin α
=

∥∥∥xy−→
∥∥∥

sin β
=

∥∥∥xp−→
∥∥∥

sin γ
.

Rearranging terms leads to (11) and (12) immediately. The geometrical

interpretations of (11) and (12) are that
∥∥∥xp−→

∥∥∥ =
∥∥∥∥pp′−→∥∥∥∥ csc α and

∥∥∥xp−→
∥∥∥ =∥∥∥∥xx′−→∥∥∥∥ csc β, where x′ is the point that lies on line yp (projected if necessary)

so that x′x
−→

⊥ yp−→.

6.2. COS bounds

We derive COS upper and lower bounds based on Identity (8). The
bounds are so named because they depend on the cosine values of α and β:∥∥∥xp−→

∥∥∥ =
∥∥∥xy−→

∥∥∥ cos α +
∥∥∥yp−→

∥∥∥ cos β

≤
∥∥∥xy−→

∥∥∥ cos α +
∥∥∥yp−→

∥∥∥ cos β.

Multiplying both sides by fi(x) and performing integration, we get:∫
fi(x)

∥∥∥xp−→
∥∥∥ dx ≤

∫
fi(x)

(∥∥∥xy−→
∥∥∥ cos α +

∥∥∥yp−→
∥∥∥ cos β

)
dx

ED(oi, p) ≤ cos α
∫

fi(x)
∥∥∥xy−→

∥∥∥ dx + cos β
∥∥∥yp−→

∥∥∥ ∫
fi(x)dx

= ED(oi, y) cos α +
∥∥∥yp−→

∥∥∥ cos β. (13)

19

Similarly, we can find a lower bound:

ED(oi, p) ≥ ED(oi, y) cos α +
∥∥∥yp−→

∥∥∥ cos β. (14)

6.3. SEC bounds

The SEC bounds consist of 2 sets of bounds. The SEC-A bounds involve
the value of sec α and are based on Identity (9). The SEC-B bounds involve
the value of sec β and are based on Identity (10).

6.3.1. SEC-A bounds

The SEC-A bound is only applicable when there is no point x ∈ MBR
such that α = π/2. This guarantees that sec α is always well defined and
hence Identity (9) is applicable.

Let Syp be the sphere with yp being a diameter (Figure 6). Let Byp be the
closed ball containing all points inside Syp, inclusively. Note that the chord
yp subtends right angles only at points on Syp (see Figure 6(a)). So, if Syp

intersects the MBR we know that SEC-A is not applicable, because points in
the intersection will make α = π/2 and hence Identity (9) is not applicable.

When Syp does not intersect the MBR, we consider two cases. In the first
case, the whole MBR lies outside Syp (or equivalently, Byp ∩MBR = ∅). In
this case, α is always acute4 and hence sec α ≥ 1 (see Figure 6(b)). In the
second case, the whole MBR lies inside Syp (or equivalently, MBR ⊆ Byp).
In this case, α is always obtuse and hence sec α ≤ −1 (see Figure 6(c)).

In the first case, since sec α is positive and the left side of Identity (9) is
non-negative, we know that the second factor on the right side of (9) must
also be non-negative. So, we have∥∥∥xp−→

∥∥∥ = sec α (
∥∥∥xy−→

∥∥∥− ∥∥∥yp−→
∥∥∥ cos γ)

≤ sec α (
∥∥∥xy−→

∥∥∥− ∥∥∥yp−→
∥∥∥ cos γ).

Multiplying both sides by fi(x) and performing integration, we get:∫
fi(x)

∥∥∥xp−→
∥∥∥ dx ≤

∫
fi(x) sec α (

∥∥∥xy−→
∥∥∥− ∥∥∥yp−→

∥∥∥ cos γ) dx

ED(oi, p) ≤ sec α
(∫

fi(x)
∥∥∥xy−→

∥∥∥ dx−
∥∥∥yp−→

∥∥∥ cos γ
∫

fi(x)dx
)

= sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ). (15)

4In this article, an angle is acute if it is in [0, π/2).

20

MBR
y

p
Syp

xα

(a) not appli-
cable

MBR
y

p
Syp

xα

(b) α: acute

MBR

y

p

Syp

xα

(c) α: obtuse

Figure 6: Different Cases for SEC-A

Similarly, a lower bound can be obtained:

ED(oi, p) ≥ sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ). (16)

In the second case, we note that sec α is negative. The derivations are
similar to those of the first case, except that the inequality sign is reversed.
We thus get the bounds:

ED(oi, p) ≤ sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ). (17)

ED(oi, p) ≥ sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ). (18)

6.3.2. SEC-B bounds

Similar to the SEC-A bounds, the SEC-B bounds are only applicable
when there is no point x ∈ MBR such that β = π/2. This guarantees that
sec β is always well defined and hence Identity (10) is applicable.

Note that points that make β = π/2 lie exactly on the hyper-plane Ppy

that passes through the point p and is perpendicular to py−→. So, if Ppy in-
tersects the MBR, SEC-B is not applicable because the intersecting points
induce β = π/2 (see Figure 7(a)).

When Ppy does not intersect the MBR, we again consider two cases. In
the first case, the whole MBR lies on the same side of Ppy as y. In this case
β is always acute (see Figure 7(b)). In the second case, the whole MBR lies
on the side of Pyp opposite to y. In this case, β is always obtuse and hence
sec β ≤ −1 (see Figure 7(c)).

21

MBR
y

p

Ppy

x

(a) not appli-
cable

MBR
y

p

Ppy

x
β

(b) β: acute

MBR

y

p
Ppy

x

β

(c) β: obtuse

Figure 7: Different Cases for SEC-B

In the first case, we note that sec β is positive and the left side of Identity
(10) is non-negative. So, the second factor on the right side must be non-
negative. This gives: ∥∥∥xp−→

∥∥∥ ≤ sec β (
∥∥∥yp−→

∥∥∥− ∥∥∥xy−→
∥∥∥ cos γ).

Recall that Identity (10) is invalid when x = y, which may happen when y ∈
MBR. However, when that happens,∥∥∥xp−→

∥∥∥ =
∥∥∥yp−→

∥∥∥
= 1 · (

∥∥∥yp−→
∥∥∥− ∥∥∥xy−→

∥∥∥ · 1)

because xy−→ = ~0 when x = y. Since sec β ≥ 1, we know that sec β ≥ 1.
Furthermore, cos γ ≤ 1 and hence cos γ ≤ 1. Therefore,∥∥∥xp−→

∥∥∥ = 1 · (
∥∥∥yp−→

∥∥∥− ∥∥∥xy−→
∥∥∥ · 1)

≤ sec β (
∥∥∥yp−→

∥∥∥− ∥∥∥xy−→
∥∥∥ cos γ)

when x = y. So, whether or not x = y, we arrive at the same upper bound.
The bound thus holds for all points x ∈ MBR, regardless of whether y ∈
MBR or not. Multiplying both sides by fi(x) and integrating, we get:

ED(oi, p) ≤ sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ). (19)

A lower bound can be similarly derived:

ED(oi, p) ≥ sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ). (20)

22

The case where β is always obtuse can be handled similarly. In that case,
sec β is negative. The derivation is similar to the first case except that the
inequality sign is reversed. The bounds so obtained are:

ED(oi, p) ≤ sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ). (21)

ED(oi, p) ≥ sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ). (22)

6.4. CSC bounds

The CSC bounds are applicable when there is no point x ∈ MBR such
that x, p, y are collinear. (This is to ensure that α and β do not attain the
value of 0 or π, thus guaranteeing that csc α and csc β are well-defined.)
Consider the line Lpy that passes through points p and y. If Lpy does not
intersect the MBR, then p, y, and any point x in the MBR are not collinear
and Identities (11) and (12) are applicable. Using (11), we derive the CSC-A
upper bound: ∥∥∥xp−→

∥∥∥ ≤
∥∥∥yp−→

∥∥∥ sin γ csc α∫
fi(x)

∥∥∥xp−→
∥∥∥ dx ≤

∫
fi(x)

∥∥∥yp−→
∥∥∥ sin γ csc α dx

ED(oi, p) ≤
∥∥∥yp−→

∥∥∥ sin γ csc α
∫

fi(x) dx

=
∥∥∥yp−→

∥∥∥ sin γ csc α. (23)

Similarly, the CSC-A lower bound is given by:

ED(oi, p) ≥
∥∥∥yp−→

∥∥∥ sin γ csc α. (24)

The CSC-B bounds are obtained similarly from (12):

ED(oi, p) ≤ ED(oi, y) sin γ csc β. (25)

ED(oi, p) ≥ ED(oi, y) sin γ csc β. (26)

6.5. Combining the Bounds Together

Finally, the Trigonometric bounds are obtained by combining the various
bounds described above. For a particular pair of cluster representative and
uncertain object, we compute the upper (resp. lower) bounds using COS,
SEC-A, SEC-B, CSC-A and CSC-B, omitting those that are not applica-
ble. The minimum (maximum) of all the applicable upper (lower) bounds

23

is used as the trigonometric upper (lower) bound. In case all upper (lower)
bounds are inapplicable, we fall back to the ones obtained using the triangle
inequality instead (see Inequality 4 and Inequality 5).

Since the trigonometric bounds are those obtained from the triangle in-
equality in case none of the bounds using COS, SEC-A, SEC-B, CSC-A, CSC-
B is applicable, the trigonometric bounds are thus no worse than those given
by the triangle inequality. On the other hand, when some specific bounds
are applicable, we can show that the trigonometric bounds are strictly bet-
ter than those using the triangle inequality under certain conditions. This
interesting result is summarized by the following theorems.

Theorem 6.1. When COS is applicable (i.e., when p, y 6∈ MBR), the upper
bound (13) given by COS is always tighter (i.e., smaller) than or equal to
that given by the triangle inequality (4). Equality holds if and only if the
(straight) ray emerging from y in the direction of py−→ intersects the MBR.

Proof. Since the value of cosine is bounded above by 1, we have: cos α ≤ 1
and cos β ≤ 1. Therefore, ED(oi, y)cos α +

∥∥∥yp−→
∥∥∥ cos β ≤ ED(oi, y) +

∥∥∥yp−→
∥∥∥ .

Equality holds if and only if cos α = 1 and cos β = 1, or equivalently, α =
β = 0. For α = 0, there must be a point x in the MBR such that x lies on
the ray emerging from y in the direction of py−→ or the ray emerging from p in
the direction of yp−→. For β = 0, there must be a point x in the MBR so that
x lies on the ray emerging from p in the direction of py−→. For both of these to
happen, we consider the intersection of these rays and deduce that α = β = 0
if and only if the ray emerging from y in the direction of py−→ intersects the
MBR.

To compare the trigonometric lower bound with the one obtained by the
triangle inequality, we first establish the following lemmas.

Lemma 6.2. When α is always acute, the lower bound (16) given by SEC-A

≥ ED(oi, y)−
∥∥∥yp−→

∥∥∥. Equality holds if and only if the (straight) ray emerging

from p in the direction of yp−→ intersects the MBR.

Proof. For acute values of α, sec α ≥ 1. So, sec α ≥ 1. Also note that
cos γ ≤ 1. Therefore,

lower bound given by SEC-A = sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ)

≥ 1 · (ED(oi, y)−
∥∥∥yp−→

∥∥∥ · 1)

= ED(oi, y)−
∥∥∥yp−→

∥∥∥ .

24

Equality holds if and only if sec α = 1 and cos γ = 1, or equivalently, α =
γ = 0. For α = 0, there must be a point x in the MBR such that x lies on
the ray emerging from y in the direction of py−→ or the ray emerging from p
in the direction of yp−→. For γ = 0, there must be a point x in the MBR such
that x lies on the ray emerging from y in the direction of yp−→. Considering the
intersection of these rays, we have α = γ = 0 if and only if the ray emerging
from p in the direction of yp−→ intersects the MBR.

Lemma 6.3. When β is always acute, the lower bound (20) given by SEC-B

≥
∥∥∥yp−→

∥∥∥−ED(oi, y). Equality holds if and only if the line segment yp intersects
the MBR.

The proof is similar and hence omitted. Now, we are ready to prove the
following theorem concerning the trigonometric lower bound.

Theorem 6.4. When both SEC-A and SEC-B are applicable, the lower
bound given by either of them is tighter (i.e., greater) than or equal to that
given by the triangle inequality (5). Equality holds only if the (straight) ray
emerging from y in the direction of yp−→ intersects the MBR.

Proof. Since SEC-A is applicable, α is either always acute or always obtuse.
Also, since SEC-B is applicable, β is either always acute or always obtuse.
We note that α and β cannot be both obtuse because the sum of the inner
angles of a triangle cannot exceed π. We now consider the following cases:

1. α is always obtuse. In this case, β must be always acute. So, by
Lemma 6.3, the lower bound given by SEC-B ≥

∥∥∥yp−→
∥∥∥ − ED(oi, y).

(Equality holds if and only if the line segment yp intersects the MBR,
which implies that the ray emerging from y in the direction of yp−→ inter-
sects the MBR.) Since α is obtuse,

∥∥∥yp−→
∥∥∥ ≥ ∥∥∥xy−→

∥∥∥ (for all x ∈ MBR(oi))

and hence
∥∥∥yp−→

∥∥∥ ≥ ED(oi, y). Therefore, the lower bound given by tri-

angle inequality (5) is
∥∥∥yp−→

∥∥∥ − ED(oi, y). Thus, the lower bound given
by SEC-B ≥ the lower bound given by the triangle inequality.

2. α is always acute.

(a) β is always obtuse. Since β is obtuse, we know that
∥∥∥xy−→

∥∥∥ ≥ ∥∥∥yp−→
∥∥∥

(for all x ∈ MBR(oi)). Hence, ED(oi, y) ≥
∥∥∥yp−→

∥∥∥. So, the triangle

inequality (5) gives ED(oi, y) −
∥∥∥yp−→

∥∥∥ as the lower bound. But
since α is always acute, we know from Lemma 6.2 that the lower

25

bound given by SEC-A ≥ ED(oi, y) −
∥∥∥yp−→

∥∥∥ = the lower bound

given by the triangle inequality. (Equality holds if and only if the
(straight) ray emerging from p in the direction of yp−→ intersects the
MBR, which implies that the ray emerging from y in the direction
of yp−→ intersects the MBR.)

(b) β is always acute. In this case, we do not know which of
∥∥∥yp−→

∥∥∥ and

ED(oi, y) is larger. However, we know that the lower bound given

by the triangle inequality is equal to either
∥∥∥yp−→

∥∥∥ − ED(oi, y) or

ED(oi, y) −
∥∥∥yp−→

∥∥∥ (whichever is greater). Now, using Lemma 6.2,
we know that the lower bound given by SEC-A is no less than
ED(oi, y) −

∥∥∥yp−→
∥∥∥. In addition, using Lemma 6.3, we know that

the lower bound given by SEC-B is no less than
∥∥∥ypj
−→∥∥∥−ED(oi, y).

So, either one of the lower bounds given by SEC-A or SEC-B is
no less than the bound given by the triangle inequality. (Equality
holds ⇒ the line segment yp intersects the MBR or the (straight)
ray emerging from p in the direction of yp−→ intersects the MBR
⇒ the ray emerging from y in the direction of yp−→ intersects the
MBR.)

To summarize, given the above theorems, we know that when COS is
applicable, the trigonometric upper bound is no worse than the upper bound
given by the triangle inequality. In addition, when CSC is applicable, the up-
per bound given by COS is strictly better than that of the triangle inequality.
This is because the applicability of CSC guarantees that the equality con-
dition mentioned in Theorem 6.1 does not hold. On the other hand, when
SEC-A and SEC-B are both applicable, the trigonometric lower bound is no
worse than the lower bound given by the triangle inequality. The former is
strictly better than the latter when all SEC-A, SEC-B and CSC are applica-
ble. Therefore, trigonometric bounds are favorable when the various bounds
are applicable. When all of COS, SEC-A, SEC-B, CSC are applicable, the
trigonometric bounds are strictly tighter than the metric bounds, thanks to
Theorems 6.1 and 6.4. (This is because equality in these theorems holds only
if CSC is inapplicable.) To maximize the likelihood that these bounds are
applicable, we choose (when possible) an anchor point that is outside the
MBR.

26

Before we end this section, we remark that the CSC-A bounds are in
fact not useful, and they were listed just for the sake of completeness. We
summarize this finding by the following theorem.

Theorem 6.5. The CSC-A bounds are no tighter than the bounds determined
using the MBR method (see Section 4).

Proof. We show the proof for the upper bound only. The proof for the lower
bound is similar and hence omitted for brevity.

Consider the point z ∈ the MBR that maximizes
∥∥∥zp−→∥∥∥. The upper bound

on ED(oi, p) given by the MBR method is d(z, p) =
∥∥∥zp−→∥∥∥. Let αz, βz and γz

be the values of the angles α, β and γ when x = z, respectively. Then, by
Identity (11), we have ∥∥∥zp−→∥∥∥ =

∥∥∥yp−→
∥∥∥ sin γz csc αz

≤
∥∥∥yp−→

∥∥∥ sin γcsc α.

Thus, the upper bound given by the MBR method is tighter than or equal
to that given by CSC-A.

In our implementation of the trigonometric method, we do not compute
the CSC-A bounds.

6.6. Summary of Trigonometric Bounds

The trigonometric bounds are obtained by combining the bounds on
ED(oi, pj) determined using trigonometry. As we have discussed, the trigono-
metric bounds are not always applicable. Their applicability depends on the
relative positions of the MBR, the anchor point, and the cluster represen-
tative. The applicability conditions are summarized in Table 1. (The table
shows only the upper bounds; lower bounds are obtained by swapping all
quantities q with q in the formulae.) We only compute those bounds that are
applicable, and take the tightest upper and lower bounds as the trigonomet-
ric bounds. In case none of the bounds are applicable, we fall back to those
obtained by the triangle inequality.

In order to make the trigonometric bounds applicable, we need to pick
an anchor point y that is outside the MBR, otherwise, Theorems 6.1 and 6.4
do not apply. Also, if y is far from the MBR, the ranges of the angles’ values
will be small. This leads to tighter bounds. Consequently, it is preferable
to choose y that is far away from the MBR, as long as enough precision is
maintained for numerical accuracy.

27

Table 1: Summary of Trigonometric Bounds
Name Applicable when... Upper Bound

COS p, y 6∈ MBR ED(oi, y) cos α +
∥∥∥yp−→

∥∥∥ cos β

SEC-A Byp ∩MBR = ∅ (α: acute) sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ)

SEC-A MBR ⊆ Byp (α: obtuse) sec α (ED(oi, y)−
∥∥∥yp−→

∥∥∥ cos γ)

SEC-B
MBR and y lie on the same
side of Ppy (β: acute)

sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ)

SEC-B
MBR and y lie on different
sides of Ppy (β: obtuse)

sec β (
∥∥∥yp−→

∥∥∥− ED(oi, y) cos γ)

CSC-A Lpy ∩MBR = ∅
∥∥∥yp−→

∥∥∥ sin γ csc α

CSC-B Lpy ∩MBR = ∅ ED(oi, y) sin γ csc β

7. Experiments

In this section we report our empirical study on the effectiveness of the
various pruning methods.

7.1. Data

We use synthetic datasets and a geographic dataset in our experiments.
The synthetic datasets, with controllable parameters, help us study the ef-
fectiveness of the pruning methods over a wide spectrum of situations. On
the other hand, the geographic dataset allows us to study the practicality of
the pruning methods under a real setting.

Synthetic datasets. We generate two types of synthetic datasets, one
with objects exhibiting intrinsic cluster patterns, one without. For each type,
a number of datasets are generated based on different parameter values.

Each dataset is generated by the following procedure. The object domain
is a rectangular 2D region with dimension [0, 100] × [0, 100]. n objects are
generated. Each object is associated with an MBR with random side lengths
no longer than d units. For datasets without cluster patterns, the objects’
MBRs are randomly positioned in the object domain. For datasets with
cluster patterns, k points in the domain are randomly chosen as the real
cluster centers, with a constraint that these points are at least 100

2
√

k
units

apart from one another. This distance constraint ensures that the cluster
centers are not too close and at the same time allows enough space for the
random placements of the centers. Each object is then randomly assigned

28

to one of the k clusters. The position of an object is randomly fixed at a
point that is no farther than 100

2
√

k
units from its assigned cluster center. This

procedure generates some natural cluster patterns [2].
For each object, we partition its MBR into

√
s ×

√
s rectangular grid

cells. Each cell’s center is used as a sample point, thus each object has
s sample points. The probability mass of each cell is first sampled from a
uniform distribution independently of other cells, and then normalized by the
sum. In our implementation of the UK-means algorithm, expected distances
are calculated by summing over discrete sample points of the MBRs. It is
therefore sufficient to represent an uncertain object by the probability masses
taken at the sample points.

Geographic dataset. Following previous studies [20, 39], we modify a
real dataset to mimic location uncertainty of mobile objects. The dataset
contains 53,145 2D points that are geographic locations in Long Beach of
California in the United States of America, originally extracted from the
US census web site, http://www.census.gov/geo/www/tiger/.We normal-
ize the locations to the [0, 100]× [0, 100] domain, and generate a d× d MBR
centering at each location. A pdf is then generated for each MBR in the
same way as with the synthetic datasets.

Table 2 summarizes the parameters used in the data generation process.
We study the effect of each parameter by varying its value while keeping the
other parameters at their default values. For those experiments that measure
the number of expected distance calculation (NED, discussed below), we use
a relatively small number of sample points (s = 1024) comparing with other
studies on uncertain data management (e.g., [40]), in order to control the
amount of time taken to complete the experiments. In a real setting where a
larger number of sample points is used, the effectiveness of a pruning method
would be even more important since the calculation of each expected distance
would take longer.

7.2. Setup

We compare the performance of UK-means with various combinations of
pruning methods:

• Brute-force: the basic UK-means algorithm without expected distance
pruning

• MBR: UK-means with Min-max-dist pruning using MBRs (Section 4)

29

Table 2: Experimental parameters and their default values.

Parameter Description Default value
n Number of objects 20,000
k Number of clusters 49
d (Maximum) side length of MBR 5
s Number of sample points 102,400 (1024 for the study of NED)

• Met:{PC/CS/PC+CS}: UK-means with Min-max-dist pruning using
MBRs and the PC, CS, or both methods with expected distance bounds
given by the triangle inequality (Section 5)

• Tri:{PC/CS/PC+CS}: UK-means with Min-max-dist pruning using
MBRs and the PC, CS, or both methods with expected distance bounds
determined by trigonometric rules (Section 6)

The primary performance metric is the average number of expected dis-
tance calculations per object per iteration, denoted as NED . It reflects the
main performance bottleneck of the UK-means algorithm. Given k clusters,
the brute-force implementation of UK-means computes all k expected dis-
tances between an object and the k cluster representatives in each iteration of
the clustering process. Therefore, NED = k under Brute-force, which serves
as a baseline for comparing the performance of the pruning methods. The
goal of the experiments is to study how many expected distance calculations
can be saved by the various pruning methods. Whenever the PC method is
involved, NED also includes the number of pre-computed expected distances
between objects and their anchor points, and thus in theory could be larger
than k if the pruning were completely ineffective.

In some experiments we also use the actual execution time as a secondary
performance metric to evaluate the computational overheads of the calcula-
tion of the various bounds.

For each clustering process, the initial cluster representatives are picked
uniformly from the 2D space. For each set of parameter values, 20 synthetic
datasets are randomly generated, and the average results are reported.

For Met:PC, the one-point scheme described in Section 5.1 is used. For
Tri:PC, an anchor point located at co-ordinates (100000,100000) is used.

30

Table 3: Performance of the pruning methods on the synthetic dataset without cluster
patterns using default experimental parameter values.

Method NED Clustering time in seconds Pdf I/O count
Brute-force 49. >360,000 (100 hours) 1,500,000
MBR 0.6393 66,918 557,534
Met:PC 0.6389 73,675 569,570
Tri:PC 0.2213 20,426 210,982
Met:PC+CS 0.0711 7,414 71,692
Met:CS 0.0598 6,136 59,411
Tri:PC+CS 0.0315 4,089 32,804
Tri:CS 0.0299 3,521 29,124

Our programs are written in Java 1.5. The experiments were conducted
on Windows machines with an Intel 3.2GHz Pentium 4 processor and 1GB
of memory.

7.3. Results

7.3.1. Default parameter values

In the first set of experiments, we investigate the performance of the
various pruning methods using the default parameter values. The results for
the dataset without cluster patterns are shown in Table 3. The rows are
sorted in descending order of NED . Note that the Brute-force method did
not terminate after 100 hours of execution.

From the NED column of the table, we clearly see that the pruning meth-
ods are very effective. For example, NED for Brute-force, MBR, and Tri:CS
are 49, 0.6393, and 0.0299, respectively. This shows that the MBR method
prunes 1−0.6393/49 = 98.7% of the expected distances computed by Brute-
force. Impressively, Tri:CS prunes yet another 1 − 0.0299/0.6393 = 95.3%
of those computed by the MBR method. Notice that NED is less than one
under any pruning method. This implies that the bounding techniques are
so effective that in most cases, considering the bounds alone is sufficient to
determine the closest cluster representative of an object without resorting to
computing expected distances.

Moreover, methods using the trigonometric bounds (prefixed by Tri:) are
about 2–3 times more effective than those using the triangle inequality only

31

(prefixed by Met:). This performance gain justifies the use of the seemingly
more complex trigonometric bounds.

Comparing the PC methods and the CS method, we see that in general
CS performs better than PC. One reason is that the anchor points used by
CS (cluster representatives of previous iterations) are close to the current
cluster representatives. This results in very tight bounds. One surprising
observation is that combining PC and CS gives a poorer performance than
using CS alone. This is due to the large overhead incurred in pre-computing
expected distances for the PC method, which could not be compensated for
by the savings brought by the method. On the contrary, no pre-computations
are done in CS, since anchor points are previous cluster representatives whose
expected distances to objects have been computed previously.

The last two columns in Table 3 show the actual execution time and the
number of pdf read from disk, respectively. Both measures correlate fairly
well with NED . It is thus reasonable to use NED as the primary performance
metric.

Tables 4 and 5 show the results of the experiments performed on the syn-
thetic dataset with cluster patterns and the ones performed on the geographic
dataset, respectively. We observe similar relative performances among the
pruning methods as compared to the case when the synthetic dataset without
cluster patterns is used. The relative effectiveness of the pruning methods
is thus not greatly affected by the data properties. For brevity and clarity,
in the following experiments that involve synthetic data, we only report the
results for the datasets without intrinsic cluster patterns.

The absolute pruning power appears to be stronger with the synthetic
dataset. We believe this is due to the fact that objects are freely distributed
in the whole 2D space in the synthetic dataset, but they are subject to geo-
graphic and architectural constraints in the geographic dataset. As a result,
the clusters in the synthetic dataset are more spread out, which increases the
ability to prune the cluster representatives that are not closest.

7.3.2. Scalability with respect to the number of objects

Next we compare the performance of the various methods as the number
of objects n increases. Figure 8 shows the results as n increases from 1,000 to
50,000. Figure 8(a) shows the performance curves of all methods. Figure 8(b)
shows a magnified version of Figure 8(a) focusing on the best four curves.
In the figures, the color of a curve indicates the method used in choosing
anchor points (i.e., PC/CS), while the marker shape indicates the bounding

32

Table 4: Performance of the pruning methods on the synthetic dataset with cluster pat-
terns using default experimental parameter values.

Method NED

Brute-force 49
MBR 0.6027
Met:PC 0.6034
Tri:PC 0.2140
Met:PC+CS 0.0878
Met:CS 0.0761
Tri:PC+CS 0.0354
Tri:CS 0.0351

Table 5: Performance of the pruning methods on the geographic dataset using default
experimental parameter values (n fixed at original dataset size, 53,145).

Method NED

Brute-force 49
MBR 1.4425
Met:PC 1.4222
Tri:PC 0.5963
Met:PC+CS 0.1254
Met:CS 0.1176
Tri:PC+CS 0.0583
Tri:CS 0.0673

33

strategy.
From Figure 8, we see that the relative rankings of the various methods

remain largely the same over the range of n. Our previous observations, such
as CS being more effective than PC and trigonometric bounds being better
than those obtained from the triangle inequality remain true with different
dataset sizes. Another observation is that the curves for CS-based methods
(Met:PC+CS, Met:CS, Tri:PC+CS, Tri:CS) drop as n increases. This is
because with more objects, the clustering process takes more iterations to
terminate. It is thus more likely that an anchor point (which is a cluster
representative in a previous iteration such that its expected distance from
an object has been computed) can be found for effective pruning. The large
overhead in pre-computations once again makes PC-based methods not as
efficient as the CS-based method, and the overhead can be so large that
Met:PC performs even worse than pure MBR-based pruning when n is small.

7.3.3. Scalability with respect to the number of clusters

Our next experiment studies the effect of the number of clusters, k. The
results are shown in Figure 9. Note that Brute-force computes all k expected
distances for each object during each iteration (i.e., no pruning). In order
to better express the pruning effectiveness of the algorithms, we report NED

as a percentage of k in Figure 9. For example, the point for MBR at k = 9
shows that MBR computes about 2.6% of the expected distances computed
by Brute-force, or a pruning effectiveness of 97.4%.

From Figure 9(a), we see that as k increases all curves go down. This
is because with more cluster representatives, there is more opportunity for
pruning and thus the algorithms can achieve a higher pruning effectiveness.
Also, CS-based methods (lower 4-curves) are a lot more effective than the
other methods. From Figure 9(b), we see that generally trigonometric prun-
ing (Tri) outperforms triangle-inequality-based methods (Met) by a wide
margin. For example, when k = 25, Tri-based methods prune at least twice
as many expected distances than their Met-based counterparts.

7.3.4. Scalability with respect to the side length of MBRs

Next, we vary the maximum side length of MBRs, d. A larger d gives a
larger uncertainty region of an object. The experiment thus studies how the
degree of uncertainty affects the algorithms’ performance. Figure 10 shows
NED as d increases from 1 to 15 units.

34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10000 20000 30000 40000 50000
n

N
E
D

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000
n

N
ED

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 8: Performance of the various pruning methods on the synthetic dataset without
cluster patterns as n increased.

35

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90
k

10
0

N
ED

/k

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90
k

10
0

N
ED

/k

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 9: Performance of the various pruning methods on the synthetic dataset without
cluster patterns as k increased.

36

0

0.5

1

1.5

2

2.5

0 3 6 9 12 15
d

N
ED

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 3 6 9 12 15
d

N
E
D

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 10: Performance of the various pruning methods on the synthetic dataset without
cluster patterns as d increased.

37

From the figure, we see that all the curves go up with d. This is because
a larger d implies that objects have larger uncertainty regions, so that the
bounds given by the various methods are looser, and it results in less effective
pruning. From Figure 10(b), we observe an interesting trend comparing the
relative performance of CS methods against PC+CS methods. We see that
when d is small (e.g., when d = 1), CS methods outperform their PC+CS
counterparts by a wide margin. This is because with small uncertainty, the
bounding techniques are very effective and thus the pre-computation over-
head incurred by PC makes PC counter-productive. However, as d increases,
bounds become looser and pruning becomes less effective. In this situation,
combining the bounds obtained from PC and CS allows for a better pruning
opportunity. This additional pruning outweighs the pre-computation over-
head. The performance of PC+CS thus catches up that of CS. When d is
large, we see that Tri:PC+CS even outperforms Tri:CS.

7.3.5. Scalability with respect to the number of sample points from each pdf

Finally, we study the effect of the number of sample points s used in
representing a pdf. Basically, the more sample points used (i.e., a larger s),
the more expensive it is to compute an expected distance (which involves
an integration over the set of sample points). The value of s thus directly
affects the execution time of the algorithms. On the other hand, the number
of expected distance calculations (NED) depends mostly on the geometry
and locations of objects’ uncertainty regions, not so much on s. We therefore
report execution times instead of NED in this experiment. We also report the
execution times of Brute-force at small s values for comparison. Figure 11
shows the results.

As expected, the running time increases as s increases for all methods.
The brute-force method quickly becomes intractable when s is only moder-
ately large. MBR and Met:PC are again the worst pruning methods. An
interesting observation from Figure 11 is that when s is very small, the
methods based on the triangle inequality performs better than those based
on trigonometric bounds. This is because when s is very small, the cost
of computing expected distances is less dominating. Even though Trigono-
metric bounds (Tri) give a higher pruning effectiveness, the overheads in
computing angle bounds become significant relative to the cost of expected
distance calculation. Hence, for small s, trigonometric pruning (Tri) is less
efficient than those based on the triangle inequality (Met).

38

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Brute-force

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20000 40000 60000 80000 100000
s

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
) Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 11: Performance of the various pruning methods on the synthetic dataset without
cluster patterns as s increased.

39

7.3.6. Scalability results on the geographic dataset

Figures 12, 13 and 14 show the performance of the various pruning meth-
ods when applied to the geographic dataset as we vary k, d, and s, respec-
tively. Except being not as smooth, the curves show similar trends and rela-
tive performance among the algorithms as those obtained from the synthetic
dataset experiments.

7.4. Summary

Based on these experimental results, we have observed the following gen-
eral trends.

• Tri:CS gives the best pruning effectiveness, shortest execution time and
lowest I/O costs over a wide range of parameters.

• However, when the uncertainty region (d) is relatively large (e.g. with
side length greater than 5% of the side length of the object domain),
Tri:PC+CS may out-perform Tri:CS.

• When the number of pdf sample points (s) is small, Met:CS delivers
better performance.

• The PC-based pruning involves non-negligible overhead, which may
fail to compensate for the number of ED computations saved from the
pruning, especially when k and n are small and s is large.

8. Discussions

In this section, we briefly discuss a few issues related to our pruning
algorithms.

8.1. Interactions between different pruning methods

From the experimental results, we see that CS-based methods perform
very well. Also, adding PC to CS (i.e., PC+CS) is generally counter-productive.
This is because of the pre-computation overhead incurred by the PC methods,
which outweighs the extra pruning power it offers. On a closer examination,
we found that if we excluded the pre-computation cost from NED , PC+CS
did perform substantially better than CS (data not shown). Thus, PC can
offer some extra mileage in terms of improving pruning effectiveness. It is

40

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90
k

10
0

N
ED

/k

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
k

10
0

N
E

D
/k

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 12: Performance of the various pruning methods on the geographic dataset as k
increased.

41

0

0.5

1

1.5

2

2.5

3

3.5

4

0 3 6 9 12 15
d

N
ED

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

0.05

0.1

0.15

0.2

0.25

0 3 6 9 12 15
d

N
ED

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 13: Performance of the various pruning methods on the geographic dataset as d
increased.

42

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Brute-force

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(a)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

(b)

Figure 14: Performance of the various pruning methods on the geographic dataset as s
increased.

43

thus interesting to find anchor points that provide distance bounds similar
to those given by PC, but without pre-computations.

One idea is again to use previous cluster representatives. Given an ob-
ject oi and a cluster representative p′j, we compute the expected distance
ED(oi, p

′
j) only if p′j cannot be pruned. This implies that p′j is likely to be

close to object oi (so that the lower bound of ED(oi, p
′
j) does not exceed

the min-max-dist threshold). As a result, p′j should serve as a good anchor
point for oi since (1) ED(oi, p

′
j) is available and (2) p′j is close to oi. We can

thus consider using p′j as an anchor point for oi in place of those selected
before the clustering process starts (see Section 5.1). Notice that under the
CS method, p′j will also be selected as an anchor point. The difference is
that under CS, p′j will only be used as an anchor point to bound the distance
from oi to a future representative pj of cluster j, while under PC, pj is used
as a general anchor point of oi and can be used to bound the distance from
oi to any future cluster representatives.

We can thus consider a revised PC method: instead of using fixed anchor
points, we maintain for each object oi a list of dynamic anchor points. This
list includes all those p′j whose expected distances from oi have been com-
puted. The list can be kept small by retaining only the closest points located
at different directions of the object (recall the discussion on the selection of
anchor points in Section 5.1). The resulting method is expected to have a
pruning power similar to the PC method and still be complementary to the
CS method, and with the advantage of no pre-computation overhead.

8.2. Comparison with Vornoi-diagram-based pruning

Given a set of cluster centers cj (j = 1, . . . , k), the Voronoi diagram of
them is a partition of the 2D space into k convex cells. Inside each cell Vj,
every point is closer to corresponding cj than any other cx (x 6= j). This
nice property has been used to facilitate k-means clustering in the cluster
assignment step [41]. In a parallel study, we have extended this technique
for use in UK-means [18]. An important theoretical result is that bisector
pruning (BP) based on Voronoi diagrams has a pruning power no less than
that of Min-max-dist pruning using MBRs (see Section 4), i.e., whenever
BP cannot eliminate a cluster candidate, neither can Min-max-dist pruning
using MBR. An overhead is incurred, though: the computation of the Voronoi
diagram, which can be computed in O(k log k) time for 2D.

On the other hand, Cluster-Shift pruning (CS, see Section 5) may be
able to prune some cluster candidates that BP fails to prune. Here is an

44

-2 2

-2

-1

1

2

X

c1

2
.8
6
6

c2

?c
′

2

1
.8
7
4

6
x
+

8
y
−

3
=

0

1
2

Figure 15: Cluster Shift vs. Bisector pruning

example. Suppose that we have an uncertain object X with an MBR that
is 2 units wide and 1 unit tall, centered at the origin (see Figure 15). For
simplicity, let X be uniformly distributed within its MBR. Suppose we have
only 2 clusters: c1 at (2, 2) and c2 at (−1,−2). To which cluster should we
assign X? The Voronoi diagram for c1 and c2 divides the 2D space into 2
halves, separated by the line 6x + 8y− 3 = 0, which bisects the line segment
joining c1 and c2 perpendicularly. This is shown as the thick slanted line
in the figure. Since this line intersects the MBR of X, Voronoi-diagram-
based pruning is not applicable [18]. Can CS help in this case? Suppose
that in the previous iteration, c2 has been updated, with the old position
being c′2 at (−1,−1.5), and that c1 has remained the same. Now, using
the CS technique, we get an upper bound for ED(X, c2): MaxDistX,2 =
ED(X, c′2)+‖c2−c′2‖. Since ED(X, c′2) = 1.874 has been computed and saved
in the previous iteration, we know its value without extra cost. Therefore,
we get the upper bound MaxDistX,2 = 1.874 + 1/2 = 2.374. Since c1 has not
changed from the last iteration, we already know that ED(X, c1) = 2.866.
Therefore, without computing ED(X, c2) (which is 2.299), the Cluster-Shift
technique can already conclude that ED(X, c2) ≤ MaxDistX,2 < ED(X, c1)
and exclude candidate c1 from consideration, which Voronoi-diagram-based
pruning cannot eliminate. A combination of both pruning techniques turns
out to be very effective [18].

8.3. Indexing MBRs

In this paper an MBR is used to enclose the uncertainty region of an
uncertain object. The purpose of the MBR is to help us tightly bound the

45

expected distance of an object and a cluster representative. The concept of
MBR is also used extensively in spatial indexing structures such as R-tree,
in which the MBRs are indexed in a recursive hierarchical structure. We can
use the concept of this hierarchical organization to reduce the overheads of
pruning rules. More specifically, given a set of nearby uncertain objects S,
we can obtain the MBR (M) that encloses the MBRs of all objects in S.
If we consider M as the MBR of a super object, we can apply our pruning
techniques to M . We remark that although M gives us very loose bounds
of the ED values of the objects in S, any pruning achieved applies to all
the objects in S. This potentially reduced the pruning overheads compared
against the case in which the pruning rules are applied repeatedly to each
individual object.

8.4. Picking an anchor point for the PC method

In our discussion, the center point of an uncertain object’s MBR is used
as the anchor point under the PC method. The advantage of this simple
approach is that the center of an MBR can be conveniently located. How-
ever, if one has pre-computed the center of mass (CG) of each uncertain
object (which costs an extra integration per object), then the CG can also
be picked as the anchor. This often results in better performance for the PC
method. We have conducted an experiment comparing two choices of the
anchor points: MBR center and CG. Figure 16 shows Ned for Met:PC under
the two choices of anchor points. We see that the CG performs better than
the MBR center. For example, when d = 12, using CG’s requires about 5
times fewer EDs than using the MBR centers. We have also evaluated the
performance of the PC method under other choices of anchor points. For
example, we have tried a few randomized methods, such as picking a random
corner of an object’s MBR, and picking a random point within an object’s
MBR. Our results show that the CG anchor points give better performance
than all those other choices. This is because the CG is generally closer to
the samples of an object’s pdf than other choices of the anchor point. There-
fore, the CG generally gives a better estimate of distances via the triangle
inequality.

9. Conclusion

In this article we have described the problem of efficient clustering of
uncertain data, which finds applications in areas where the exact values of

46

0

0.5

1

1.5

2

2.5

0 3 6 9 12 15
d

N
E

D
Met:PC
(MBR
center)

Met:PC
(CG)

Figure 16: Performance of Met:PC under two choices of anchor points.

some data attributes are not certain, but can be modeled by a probability
density function (pdf). We have described the basic UK-means algorithm for
uncertain data clustering. We have shown that when objects’ pdf’s are not
confined to a parametric family but can take any arbitrary form, the cost of
expected distance calculations is the performance bottleneck of UK-means.
We have introduced the basic Min-max-dist pruning framework and have
devised a number of pruning algorithms based on the framework. These
pruning algorithms include the MBR method, the Pre-Computation (PC)
method, and the Cluster-Shift (CS) method. We have studied two bounding
techniques: Met bounds are based on the triangle inequality and Tri bounds
are based on a number of trigonometric rules. We have studied the theoretical
advantages and disadvantages of the different trigonometric bounds, and have
proved that under certain easily attainable conditions, trigonometric bounds
are strictly better than metric bounds.

In the experiment section, we have illustrated the importance of the prun-
ing methods by comparing the computation cost of UK-means with and with-
out expected distance pruning. We have also compared the performance of
the different pruning methods. In general, we have found that the meth-
ods that involve trigonometric bounds are superior to those that involve the
metric bounds, which are in turn superior to the basic MBR method. In
addition, the CS method has been found to perform better than the PC
method due to the pre-computation overhead of the latter. Overall, the best

47

pruning method could have a computational cost (in terms of the number
of expected distance calculations) four orders of magnitude lower than the
brute-force implementation.

Acknowledgment

We would like to thank Mr. Chun-Kit Chui and Dr. Wai-Shing Ho for
helpful discussions.

References

[1] M. Chau, R. Cheng, B. Kao, J. Ng, Uncertain data mining: An example
in clustering location data, in: Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2006.

[2] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, K. Y. Yip, Efficient
clustering of uncertain data, in: Proceedings of the Sixth International
Conference on Data Mining, 2006, pp. 436–445.

[3] J. Chen, R. Cheng, Efficient evaluation of imprecise location-dependent
queries, in: Proc. ICDE, 2007.

[4] R. Cheng, Y. Zhang, E. Bertino, S. Prabhakar, Preserving user location
privacy in mobile data management infrastructures, in: Proc. of the 6th
Workshop on Privacy Enhancing Technologies, 2006.

[5] M. F. Mokbel, C.-Y. Chow, W. G. Aref, The new casper: Query pro-
cessing for location services without compromising privacy, in: VLDB,
2006.

[6] P. Misra, P. Enge, Global Positioning System: Signals, Measurements
and Performance (2nd Edition), Ganga-Jumuna Press, 2006.

[7] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient
communication protocol for wireless microsensor networks, in: Proceed-
ings of IEEE International Conference on System Sciences, 2000.

[8] S. Bandyopadhyay, E. J. Coyle, An energy efficient hierarchical clus-
tering algorithm for wireless sensor networks, in: Proceedings of IEEE
INFOCOM, 2003.

48

[9] O. Wolfson, H. Yin, Accuracy and resource concumption in tracking and
location prediction, in: Advances in Spatial and Temporal Databases,
8th International Symposium, SSTD 2003, Vol. 2750 of Lecture Notes
in Computer Science, Springer, Santorini Island, Greece, 2003, pp. 325–
343.

[10] D. Pfoser, C. S. Jensen, Capturing the uncertainty of moving-object
representations, in: Proceedings of the 6th International Symposium on
Advances in Spatial Databases, 1999, pp. 111–132.

[11] O. Wolfson, A. P. Sistla, S. Chamberlain, Y. Yesha, Updating and
querying databases that track mobile units, Distributed and Parallel
Databases 7 (3) (1999) 258–287.

[12] N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases,
in: Proceedings of the 30th International Conference on Very Large Data
Bases, 2004, pp. 864–875.

[13] D. Barbara, H. Garcia-Molina, D. Porter, The management of proba-
bilistic data, IEEE Transactions on Knowledge and Data Engineering
4 (5) (1992) 487–502.

[14] R. Cheng, D. V. Kalashnikov, S. Prabhakar, Evaluating probabilistic
queries over imprecise data, in: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, 2003.

[15] R. Cheng, D. V. Kalashnikov, S. Prabhakar, Querying imprecise data
in moving object environments, IEEE Transactions on Knowledge and
Data Engineering 16 (9) (2004) 1112–1127.

[16] J. Chen, R. Cheng, Efficient evaluation of imprecise location-dependent
queries, in: ICDE, IEEE, Istanbul, Turkey, 2007, pp. 586–595.

[17] S. D. Lee, B. Kao, R. Cheng, Reducing UK-means to K-means, in:
The 1st Workshop on Data Mining of Uncertain Data (DUNE), in con-
junction with the 7th IEEE International Conference on Data Mining
(ICDM), Omaha, NE, USA, 2007.

[18] B. Kao, S. D. Lee, D. W. Cheung, W.-S. Ho, K. F. Chan, Clustering
uncertain data using Voronoi diagrams, in: Proceedings of the 8th IEEE

49

International Conference on Data Mining (ICDM 2008), 2008, pp. 333–
342.

[19] T. Emrich, H.-P. Kriegel, P. Kroger, M. Renz, A. Zufle, Boosting spatial
pruning: On optimal pruning of mbrs, in: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, 2010, pp.
39–50.

[20] H.-P. Kriegel, M. Pfeifle, Density-based clustering of uncertain data, in:
Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, 2005.

[21] C. K. Chui, B. Kao, E. Hung, Mining frequent itemsets from uncertain
data, in: Advances in Knowledge Discovery and Data Mining, 11th
Pacific-Asia Conference, (PAKDD) Proceedings, Vol. 4426 of Lecture
Notes in Computer Science, Springer, Nanjing, China, 2007, pp. 47–58.

[22] C. C. Aggarwal, On density based transforms for uncertain data mining,
in: Proceedings of the IEEE International Conference on Data Engineer-
ing, 2007.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, in: Pro-
ceedings of 2nd International Conference on Knowledge Discovery and
Data Mining, 1996.

[24] M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering
points to identify the clustering structure, in: Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, 1999.

[25] H.-P. Kriegel, M. Pfeifle, Hierarchical density-based clustering of uncer-
tain data, in: Proceedings of the Fifth IEEE International Conference
on Data Mining, 2005.

[26] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace
clustering of high dimensional data for data mining applications, in:
Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, 1998.

50

[27] Z. Yu, H.-S. Wong, Mining uncertain data in low-dimensional subspace,
in: Proceedings of the IEEE International Conference on Pattern Recog-
nition, 2006.

[28] A. Gionis, A. Hinneburg, S. Papadimitriou, P. Tsaparas, Dimension in-
duced clustering, in: Proceedings of International Conference on Knowl-
edge Discovery and Data Mining, 2005.

[29] M. Ichino, H. Yaguchi, Generalized Minkowski metrics for mixed feature-
type data analysis, IEEE Transactions on Systems, Man and Cybernet-
ics 24 (4) (1994) 698–708.

[30] R. M. C. R. de Souza, F. de A. T. de Carvalho, Clustering of interval data
based on city-block distances, Pattern Recognition Letters 25 (2004)
353–365.

[31] E. H. Ruspini, A new approach to clustering, Information Control 15 (1)
(1969) 22–32.

[32] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in de-
tecting compact well-separated clusters, Journal of Cybernetics 3 (1973)
32–57.

[33] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Al-
gorithms, Plenum Press, New York, 1981.

[34] M. Sato, Y. Sato, L. C. Jain, Fuzzy Clustering Models and Applications,
Physica-Verlag, Heidelberg, 1997.

[35] M. Tabakov, A fuzzy clustering technique for medical image segmenta-
tion, in: International Symposium on Evolving Fuzzy Systems, 2006.

[36] J. B. MacQueen, Some methods for classification and analysis of mul-
tivariate observations, in: Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[37] M. Nanni, Speeding-up hierarchical agglomerative clustering in presence
of expensive metrics, in: Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining, 2005, pp. 378–387.

51

[38] C. Elkan, Using the triangle inequality to accelerate k-means, in: Pro-
ceedings of the Twentieth International Conference on Machine Learn-
ing, 2003.

[39] H.-P. Kriegel, P. Kunath, M. Pfeifle, M. Renz, Probabilistic similarity
join on uncertain data, in: Proceedings of the 11th International Confer-
ence on Database Systems for Advanced Applications (DASFAA 2006),
2006, pp. 295–309.

[40] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, S. Prabhakar, Index-
ing multi-dimensional uncertain data with arbitrary probability density
functions, in: Proceedings of the 31st International Conference on Very
Large Data Bases, 2005.

[41] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silver-
man, A. Y. Wu, An efficient k-means clustering algorithm: Analysis and
implementation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002)
881–892.

52

A. Finding Bounds on Angles

To find the trigonometric bounds introduced in Section 6, it is necessary
to find bounds on several trigonometric functions of the angles α, β and γ
(see Figure 5) as the point x varies within the MBR of the uncertain object
in question. There are many possible approaches to finding bounds on the
trigonometric functions. In this appendix, we provide techniques to find the
bounds on the angles α, β and γ. Once the bounds on these angles are
found, we can find out the bounds on the trigonometric functions using the
methods described in Appendix B. We will be reusing the notations defined
in Section 6. It is particularly helpful to revise that section and refer to
Figure 5.

The following discussion will be based on a special instance of this prob-
lem: 2-dimensional spaces, because it is easier to illustrate the ideas with 2D
drawings. This is also what we have implemented in the programs used for
the experiments in Section 7. Via coordinate geometry, we have proved that
these techniques can be generalized to 3 dimensions and higher. The ideas
of α-contours, β-contours and γ-contours are analogous to the 2D case. The
proofs are lengthy and hence not included here.

A.1. Bounds on α

To determine the bounds on α, we first introduce the concept of α-
contours. Consider any point x in two dimensional space distinct from y
and p. The angle 6 pxy is α. (See Figure 17.) If we draw a circumcircle of

4pxy, we can obtain the arc
︷ ︷
pxy. From elementary geometry, we know that

since yp is a chord of this circle, it subtends the same angle α on the arc
︷ ︷
pxy.

By symmetry, on the mirror image of this arc reflected about the line yp, yp
subtends the same angle α, too. (e.g. see point x′ in Figure 17.) Indeed, this
arc (excluding the points p and y) and its mirror image is the set of all points
that make the same angle α with y and p. Let us denote the mid-point of
yp as m. We draw the perpendicular bisector of yp starting from point m
and extending in one direction. Then, this line overlaps with the diameter of
the circumcircle. Denote the intersection point of this perpendicular bisector
and the arc as a. Then, 6 pay is also α.

Now, examine another point a0 on the perpendicular bisector such that∥∥∥ma0
−−→∥∥∥ <

∥∥∥ma−→
∥∥∥. Then, α0 = 6 pa0y > α. We can again draw a circumcircle

of 4pa0y and obtain the arc
︷ ︷
pa0y. Then, for any point x0 on this arc (or x′

0

on it mirror image reflected about yp), 6 px0y = α0 (= 6 px′
0y). This arc and

53

p

y

m

x0

a0

x′
0

x

a
x′

α

α

α
α0

α0

α0

Figure 17: α-contours

its mirror image (excluding the points y and p) is the set of all points in that
makes an angle of α0 with y and p.

Indeed, by varying the distance of a from m (while maintaining a on the
perpendicular bisector of yp and on one side of line yp), we can draw a set of
contour lines for all a. Each contour line is an arc (excluding the end points
y and p) plus its mirror image (reflected about line yp) for the same α. We
will call these α-contours. Note that there are two limiting cases:

•
∥∥∥ma−→

∥∥∥ → 0. In this case, the contour is the line segment yp (excluding

points y and p) for α = π.

•
∥∥∥ma−→

∥∥∥ → ∞. The contour for this case is the (infinite) line through
y and p excluding all the points at and between y and p. This is the
contour for α = 0.

It should be obvious that the α-contours do not intersect one another,
and (including the two limiting cases) they cover the whole space (except the

two singularities y and p). In addition, we know that α decreases as
∥∥∥ma−→

∥∥∥
increases, because

∥∥∥ma−→
∥∥∥ =

∥∥∥my−→
∥∥∥ cot(α/2) and α ∈ [0, π].

In 3D space, an α-contour is the surface of revolution of arc
︷ ︷
pay about

the axis yp. Generalisation to higher dimensions can be similarly derived.

A.1.1. Lower bound on α

With the concept of α-contours, it is easy to find α as follows.
We first pick an arbitrary point x ∈ MBR. The circumcircle of 4pxy

determines the arc
︷ ︷
pxy. (See Figure 18.) The α-contour for x thus consists

of the arc
︷ ︷
pxy (excluding points p and y) and its mirror image. This contour

54

MBR

p

y

m
x

a

x∗

a∗

α α

α

α

Figure 18: α-contour for α

intersects the bisector of yp at a. Note that all points in the intersection
of the contour and the MBR make the same angle α with y and p. Now,
by progressively increasing

∥∥∥ma−→
∥∥∥, we get contours for smaller and smaller α.

Points in the intersections of these contours and the MBR thus progressively
make smaller and smaller angles with y and p. If any point on the line yp
excluding the segment yp lies in the MBR, then, we can keep on increasing∥∥∥ma−→

∥∥∥ indefinitely and reach the limiting case
∥∥∥ma−→

∥∥∥ →∞. This corresponds
to an α of zero, thus α = 0.

Otherwise, y and p must be outside the MBR. But since the MBR is
bounded, as we increase

∥∥∥ma−→
∥∥∥, we will eventually reach a maximum value∥∥∥ma−→

∥∥∥ =
∥∥∥ma∗−−→∥∥∥ so that the contour still intersects the MBR. This can only

occur when the contour intersects the MBR at the corner points of the MBR.
At these corners, α is minimized at value α.

Note that since all we want to find is α, there is no need to actually locate

a∗ or compute the arc
︷ ︷
pa∗y. We have shown that the minimum α can only

be attained at the corners of the MBR. So, it suffices to check the values of
α at the corners of the MBR.

Here is the procedure to find α. We first check whether y and p are both
outside the MBR. If so, we only need to compute the values of α at all corners
of the MBR, and take the minimum among them. This gives α. However, if
either y or p is in the MBR, then, α = 0. Note that this argument applies
to 3-dimensions and higher, too.

A.1.2. Upper bound on α

Similarly, α can be found by starting at an arbitrary point in the MBR,
and then progressively decreasing

∥∥∥ma−→
∥∥∥ until we reach a minimum value

55

MBR

p

y

m x

a

x∗

a∗

α

α

α

(a) Touching an edge

MBR

p

y
m

x

a

x∗

a∗

α

α

α

α

(b) Intersecting an corner

Figure 19: α-contours for α

∥∥∥ma−→
∥∥∥ =

∥∥∥ma∗
−−→∥∥∥. There are 3 possible cases, though.

Case 1: When line segment yp intersects the MBR, we will reach the
limiting case where

∥∥∥ma∗
−−→∥∥∥ = 0, which corresponds to α = π. So, in this case

α = π.
Case 2: The arc

︷ ︷
pa∗y touches an edge of the MBR, as illustrated in

Figure 19(a). Let the point of contact be x∗, the point at which the maximum
angle α is attained. This point x∗ is not necessarily at a corner of the MBR.
So, unlike the lower bound, we cannot simply check all corners and skip
dealing with the α-contours. We need to find the point of contact x∗ with an
edge of the MBR. Once x∗ is found, the corresponding α can be computed
directly. Repeating this for all edges of the MBR, we can determine α.

Case 3: The arc
︷ ︷
pa∗y intersects only corner points of the MBR. When

trying to compute the point of contact of the contours with an edge of the
MBR, solutions to the equations may give a point that lies outside the MBR,
along the projection of the edge. This happens when the contour for α
intersects only corner points. (See Figure 19(b).) That corner point lies on
the edge being considered. So, in this case, instead of examining the point
of contact as given by the solution of the equations, we should check the end
points of that edge of the MBR.

Therefore, to find α, we need to consider every edge of the MBR. For each
edge (a line segment), we try to find the α-contour that touches the straight
line containing the edge. If the point of contact lies within the edge, examine

56

the value of α at this contact point; otherwise, we examine the value of α
at the end points of the edge. After all edges are considered, the maximum
value of α among the examined ones gives the value of α.

A.2. Bounds on β

Similarly, to find β and β, we use the concept of contours. In 2D, the β-
contour is a ray (a straight line starting from a point and extends to infinity)
that originates from p and makes an angle of β with py−→. The point p is
excluded. (See Figure 20(a).) Two such rays can be found and they are
mirror images of each other, reflected about the line yp. In 3D, the β-contour
is the surface of revolution of these rays about the axis yp. Such a surface
has the shape of a cone, with the apex removed. The idea of β-contours can
be similarly extended to higher dimensions.

Like the α-contours, we have two limiting cases:

• β → 0. In this case, the β-contour reduces to a single ray starting from
p and extending in the direction of py−→. Again, the point p is excluded.

• β → π. The β-contour also reduces to a single ray in this case, starting
from p, but extending in the direction of yp−→ instead. The point p is
excluded from this contour.

Since the β-contours are simply straight rays that radiate from the point
p. The situation is much simpler. The maximum and minimum β-contours
always intersect the MBR at the corners of the MBR, because the MBR is
convex and the rays are straight. The only thing to care about is to check
for the limiting cases.

A.2.1. Lower bound on β

If the ray starting from p extending in the direction of py−→ intersects the
MBR (see Figure 20(b)), then the minimum β is attained in that intersection,
giving β = 0.

Otherwise, we just need to find the least value of β such that the β-contour
intersects MBR. This contour must intersect the MBR at its corners. So, we
only need to enumerate through all corner points of the MBR, calculating
the value of β at those points, and take the minimum value of them. This
gives the value β.

57

MBR

p

y

x

x∗

x∗β

β

β

(a) General Case

MBR

p

y

xx∗ β

β = 0

(b) β = 0

MBR

p

y

x

x∗

β

β = π

(c) β = π

Figure 20: β-contours

A.2.2. Upper bound on β

If the ray starting from p extending in the direction yp−→ intersects the
MBR (see Figure 20(c)), then the maximum β is attained in that intersection,
giving β = π.

Otherwise, we just need to find the greatest value of β such that the β-
contour intersects MBR. This contour must intersect the MBR at its corners.
So, we only need to go through all corner points of the MBR, and calculate
the corresponding values of β. The maximum of them gives the value of β.

A.3. Bounds on γ

These can be found in a way similar to the bounds on β as described
above. We only need to exchange the roles of p and y and those of β and γ.
All the arguments in Section A.2 apply.

B. Finding Bounds on Trigonometric Functions

To compute the trigonometric bounds (Section 6), we need to find the
upper and lower bounds of the trigonometric functions sine, cosine, secant
and cosecant for angles that vary within a certain interval. The interval of
the angles can be determined using the method described in Appendix A. In
this appendix, we assume that we are given an interval [θ, θ] ⊆ [0, π]. Our
goal is to find the extreme values of trigonometric functions on any variable
angle θ ∈ [θ, θ].

For sine, we note that this continuous function is increasing in [0, π/2]
and decreasing [π/2, π], with a local maximum at π/2. So, to find its up-
per bound we first determine whether π/2 ∈ [θ, θ]. If so, then sin θ = 1.

58

Otherwise, [θ, θ] is either a subset of [0, π/2] or [π/2, π]. The sine function
is continuous without local extrema in these intervals. So, the maximum
value is attained at the end points of the interval being considered. Thus,
sin θ = max(sin θ, sin θ). For the lower bound, since sine has no local mini-
mum in [0, π], we have: sin θ = min(sin θ, sin θ).

Since cosine is a decreasing, continuous function in [0, π], cos θ = cos θ
and cos θ = cos θ.

The secant function is undefined at π/2 and it is unbounded near π/2.
So, when π/2 ∈ [θ, θ], sec θ = +∞ and sec θ = −∞. Fortunately, the
applicability conditions of SEC bounds (Section 6.3) have eliminated this
possibility. So, we only need to handle the cases [θ, θ] ⊆ [0, π/2) and [θ, θ] ⊆
(π/2, π]. In either case, sec θ is a continuous, increasing function in the
interval being considered. Therefore, sec θ = sec θ and sec θ = sec θ.

The cosecant function is undefined at 0 and π. We exclude these points
from consideration and only consider the situation where [θ, θ] ⊆ (0, π). This
is because the applicability conditions of the CSC bounds (Section 6.4) have
eliminated the possibility of θ = 0 or π. The cosecant function is continuous
and decreasing within (0, π/2] and increasing within [π/2, π), with a local
minimum at π/2. So, if π/2 ∈ [θ, θ], then csc θ = 1. Otherwise, csc θ must
attain its minimum value at an end point of the interval being considered.
Hence, csc θ = min(csc θ, csc θ). Since csc θ has no local maximum, we have:
csc θ = max(csc θ, csc θ).

The following formulae summarize the results of the above discussions.

sin θ =

{
1 if π/2 ∈ [θ, θ]
max(sin θ, sin θ) otherwise

sin θ = min(sin θ, sin θ)
cos θ = cos θ
cos θ = cos θ

sec θ =
{

+∞ if π/2 ∈ [θ, θ]
sec θ otherwise

sec θ =

{
−∞ if π/2 ∈ [θ, θ]
sec θ otherwise

csc θ = max(csc θ, csc θ)

csc θ =

{
1 if π/2 ∈ [θ, θ]
min(csc θ, csc θ) otherwise

Note that the formulae for csc θ and csc θ are valid only if [θ, θ] ⊆ (0, π).

59

