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ABSTRACT
Motivation: An important problem in systems biology is reconstruc-
ting complete networks of interactions between biological objects
by extrapolating from a few known interactions as examples. While
there are many computational techniques proposed for this network
reconstruction task, their accuracy is consistently limited by the small
number of high-confidence examples, and the uneven distribution of
these examples across the potential interaction space, with some
objects having many known interactions and others few.
Results: To address this issue, we propose two computational
methods based on the concept of training set expansion. They
work particularly effectively in conjunction with kernel approaches,
which are a popular class of approaches for fusing together many
disparate types of features. Both our methods are based on semi-
supervised learning and involve augmenting the limited number of
gold-standard training instances with carefully chosen and highly con-
fident auxiliary examples. The first method, prediction propagation,
propagates highly confident predictions of one local model to ano-
ther as the auxiliary examples, thus learning from information-rich
regions of the training network to help predict the information-poor
regions. The second method, kernel initialization, takes the most
similar and most dissimilar objects of each object in a global kernel
as the auxiliary examples. Using several sets of experimentally veri-
fied protein-protein interactions from yeast, we show that training set
expansion gives a measurable performance gain over a number of
representative, state-of-the-art network reconstruction methods, and
it can correctly identify some interactions that are ranked low by other
methods due to the lack of training examples of the involved proteins.
Supplementary information: The datasets and additional materials
can be found at http://networks.gersteinlab.org/tse .

1 INTRODUCTION
Many types of biological data are naturally represented as networks,
in which a node corresponds to a biological object and an edge
corresponds to an interaction between two objects. For example,

∗to whom correspondence should be addressed

in protein interaction networks, a node is a protein and an edge
connects two proteins that physically interact. In gene regulatory
networks, a node denotes a gene and its corresponding protein(s),
and an edge connects a regulator protein to a gene it regulates. In
genetic networks, a node is a gene and an edge connects two genes
that have genetic interactions such as synthetic lethality.

These networks provide important information for understanding
the underlying biological processes, since they offer a global view
of the relationships between biological objects. In recent years
high-throughput experiments have enabled large-scale reconstruc-
tion of the networks. However, as these data are usually incomplete
and noisy, they can only be used as a first approximation of
the complete networks. For example, a recent study reports that
the false positive and negative rates of yeast two-hybrid protein-
protein interaction data could be as high as 25%-45% and 75%-90%
respectively (Huanget al., 2007), and a recently published dataset
combining multiple large-scale yeast-two-hybrid screens is estima-
ted to cover only 20% of the yeast binary interactome (Yuet al.,
2008). As another example, as of July 2008, the synthetic lethal
interactions in the BioGRID database (Starket al., 2006) (version
2.0.42) only involve 2505 yeast genes, while there are about 5000
non-essential genes in yeast (Giaeveret al., 2002). A large part of
the genetic network is likely not yet discovered.

To complement the experimental data, computational methods
have been developed to assist the reconstruction of the networks.
These methods learn from some example interactions, and predict
the missing ones based on the learned models.

This problem is known as supervised network inference (Vert
and Yamanishi, 2005). The input to the problem is a graphG =
(V, E, Ē) whereV is a set of nodes each representing a biological
object (e.g. a protein), andE, Ē ⊂ V × V are sets of known edges
and non-edges respectively, corresponding to object pairs that are
known to interact and not interact respectively. All the remaining
pairs are not known to interact or not (Figure 1(a)). A model is to
be learned from the data, so that when given any object pair(vi, vj)
as input, it will output a predictiony ∈ [0, 1] where a larger value
means a higher chance of interaction between the objects.

c© Oxford University Press 2008. 1
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Fig. 1. The supervised network inference problem. (a) Adjacency matrix
of known interactions (black boxes), known non-interactions (white boxes),
and node pairs with an unknown interaction status (gray boxes with question
marks). (b) Kernel matrix, with a darker color representing a larger inner
product. (c) Partially-complete adjacency matrix required by the supervised
direct approach methods, with complete knowledge of a submatrix. In the
basic local modeling approach, the dark gray portion cannot be predicted.

The models are learned according to some data features that
describe the objects. For example, in predicting protein-protein
interaction networks, functional genomic data are commonly used.
In order to learn models that can make accurate predictions, it is
usually required to integrate heterogeneous types of data as they
contain different kinds of information. Since the data are in diffe-
rent formats (e.g. numeric values for gene expression, strings for
protein sequences), integrating them is non-trivial. A natural choice
for this complex data integration task is kernel methods (Schölkopf
et al., 2004), which unify the data representation as special matrices
called kernels and facilitate easy integration of these kernels into
a final kernelK through various means (Lanckrietet al., 2004)
(Figure 1(b)). As long asK is positive semi-definite,K(vi, vj)
represents the inner product of objectsvi andvj in a certain embed-
ded space (Mercer, 1909), which can be interpreted as the similarity
between the objects. Kernel methods then learn the models from the
training examples and the inner products (Aizermanet al., 1964).
Since network reconstruction involves many kinds of data, in this
article we will focus on kernel methods for learning.

The supervised network inference problem differs from most
other machine learning settings in that instead of making a predic-
tion for each input object (such as a protein), the learning algorithm
makes a prediction for each pair of objects, namely how likely these
objects interact in the biological network. Since there is a quadra-
tic number of object pairs, the computational cost could be very
high. For instance, while learning a model for the around 6000
genes of yeast is not a difficult task for contemporary computing
machines, the corresponding task for the around 18 million gene
pairs remains challenging even for high-end computers. Specialized
kernel methods have thus been developed for this learning problem.

For networks with noisy high-throughput data, reliable “gold-
standard” training sets are to be obtained from data verified by
small-scale experiments or evidenced by multiple methods. As the
number of such interactions is small, there is a scarcity of training
data. In addition, the training data from small-scale experiments
are usually biased towards some well-studied proteins, creating an
uneven distribution of training examples across proteins.

In the next section, we review some existing computational
approaches to reconstructing biological networks. One recent pro-
posal islocal modeling(Bleakleyet al., 2007), which allows for the
construction of very flexible models by letting each object construct
a different local model, and has been shown promising in some
network reconstruction tasks. However, when there is a scarcity of
training data, the high flexibility could turn out to be a disadvantage,
as there is a high risk of overfitting, i.e., the construction of overly
complex models that fit the training data well but do not represent
the general trend of the whole network. As a result, the prediction
accuracy of the models could be affected.

In this article we propose methods calledtraining set expansion
that alleviate the problem of local modeling while preserving its
modeling flexibility. They also handle the issue of uneven training
examples by propagating knowledge from information-rich regi-
ons to information-poor regions. We will show that the resulting
algorithms are highly competitive with the existing approaches in
terms of prediction accuracy. We will also present some interesting
findings based on the prediction results.

2 RELATED WORK: EXISTING APPROACHES
FOR NETWORK RECONSTRUCTION

2.1 The pairwise kernel approach
In the pairwise kernel (Pkernel) approach (Ben-Hur and Noble,
2005), the goal is to use a standard kernel method (such as SVM) to
make the predictions by treating each object pair as a data instance
(Figure 2(a,b)). This requires the definition of an embedded space
for object pairs. In other words, a kernel is to be defined, which
takes two pairs of objects and returns their inner product. Withn
objects, the kernel matrix containsO(n4) entries in total.

One systematic approach to constructing suchpairwise kernelsis
to build them on top of an existing kernel for individual objects, in
which each entry corresponds to the inner product of two objects.
For example, suppose a kernelK for individual objects is given,
andv1, v2, v3, v4 are four objects, the following function can be
used to build the pairwise kernel (Ben-Hur and Noble, 2005):

K′((v1, v2), (v3, v4)) = K(v1, v3)K(v2, v4)+K(v1, v4)K(v2, v3)
(1)

Loosely speaking, two object pairs are similar if the two objects
in the first pair are respectively similar to different objects in the
second pair.

2.2 The direct approach
The direct approach (Yamanishiet al., 2004) avoids working in the
embedded space of object pairs. Instead, only a kernel for indivi-
dual objects is needed. Given such an input kernelK and a cutoff
thresholdt, the direct approach simply predicts each pair of objects
(vi, vj) with K(vi, vj) ≥ t to interact, and each other pair to not
interact. Since the example interactions and non-interactions are not
used in making the predictions, this method is unsupervised.

The direct approach is related to the pairwise kernel approach
through a simple pairwise kernel:

K′((v1, v2), (v3, v4)) = K(v1, v2)K(v3, v4) (2)
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With this kernel, each object pair(vi, vj) is mapped to the point
K(vi, vj) on the real line in the embedded space of object pairs.
Thresholding the object pairs at a valuet is equivalent to placing
a hyperplane in the embedded space with all pairs(vi, vj) having
K(vi, vj) ≥ t on one side and all other pairs on the other side.
Therefore, if this pairwise kernel is used, then learning a linear clas-
sifier in the embedded space is equivalent to learning the best value
for thresholdt.

To make use of the training examples, two supervised versions
of the direct approach have been proposed. They assume that the
sub-network of a subset of objects is completely known, so that
a submatrix of the adjacency matrix is totally filled (Figure 1(c)).
The goal is to modify the similarity values of the objects defined by
the kernel to values that are more consistent with the partial adja-
cency matrix. Thresholding is then performed on the resulting set of
similarity values.

The two versions differ in the definition of consistency between
the similarity values and the adjacency matrix. In the kernel canoni-
cal correlation analysis (kCCA) approach (Yamanishiet al., 2004),
the goal is to identify featuref1 from the input kernel and featuref2

from the diffusion kernel derived from the partial adjacency matrix
so that the two features have the highest correlation under some
smoothness requirements. Additional feature pairs orthogonal to the
previous ones are identified in similar ways, and the firstl pairs are
used to redefine the similarity between objects.

In the kernel metric learning (kML) approach (Vert and Yama-
nishi, 2005), a featuref1 is identified by optimizing a function that
involves the distance between known interacting objects. Again,
additional orthogonal features are identified, and the similarity
between objects is redefined by these features.

2.3 The matrix completion approach
The em approach (Tsudaet al., 2003) also assumes a partially com-
plete adjacency matrix. The goal is to complete it by filling in the
missing entries, so that the resulting matrix is closest to a spectral
variant of the kernel matrix as measured by KL-divergence. The
algorithm iteratively searches for the filled adjacency matrix that is
closest to the current spectral variant of the kernel matrix, and the
spectral variant of the kernel matrix that is closest to the current fil-
led adjacency matrix. When convergence is reached, the predictions
are read from the final completed adjacency matrix.

2.4 The local modeling approach
A potential problem of the previous approaches is that one single
model is built for all object pairs. If there are different subgroups
of interactions, a single model may not be able to separate all inter-
acting pairs from non-interacting ones. For example, protein pairs
involved in transient interactions may use a very different mecha-
nism than those involved in permanent complexes. These two types
of interactions may form two separate subgroups that cannot be
fitted by one single model.

A similar problem has been discussed in Myers and Troyanskaya
(2007). In this work, the biological context of each gene is taken
into account by conditioning the probability terms of a Bayesian
model by the biological context. The additional modeling power
of having multiple context-dependent sub-models was demonstrated
by improved accuracy in network prediction.

Another way to allow for a more flexible modeling of the sub-
groups islocal modeling(Bleakleyet al., 2007). Instead of building
a single global model for the whole network, one local model is built
for each object, using the known interactions and non-interactions
of it as the positive and negative examples. Each pair of objects thus
receives two predictions, one from the local model of each object.
In our implementation, the final prediction is a weighted sum of the
two according to the training accuracy of the two local models.

Figure 2 illustrates the concept of local modeling. Part (a) shows
an interaction network, with solid green lines representing known
interactions, dotted red lines representing known non-interactions,
and the dashed black line representing an object pair of which the
interaction status is unknown. Part (b) shows a global model with
the locations of the object pairs determined by a pairwise kernel.
The object pair(v3, v4) is on the side with many positive examples,
and is predicted to interact. Part (c) shows a local model for object
v3. Objectv4 is on the side with a negative example, and(v3, v4) is
predicted to not interact.
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Fig. 2. Global and local modeling. (a) An interaction network with each
green solid edge representing a known interaction, each red dotted edge
representing a known non-interaction, and the dashed edge representing a
pair of objects with an unknown interaction status. (b) A global model based
on a pairwise kernel. (c) A local model for objectv3.

Since each object has its own local model, subgroup structures
can be readily handled by having different kinds of local models for
objects in different subgroups.

3 OUR PROPOSAL: THE TRAINING SET
EXPANSION APPROACH

Local modeling has been shown to be very competitive in terms of
prediction accuracy (Bleakleyet al., 2007). However, local models
can only be learned for objects with a sufficiently large amount
of known interactions and non-interactions. When the training sets
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are small, many objects would not have enough data for training
their local models. Overfitting may occur, and in the extreme case
where an object has no positive or negative examples, its local model
simply cannot be learned. As to be shown in our empirical study pre-
sented below, this problem is especially serious when the embedded
space is of very high dimension, since very complex models that
overfit the data could be formed.

In the following we propose ways to tackle this data scarcity issue
while maintaining the flexibility of local modeling. Our idea is to
expand the training sets by generating auxiliary training examp-
les. We call it thetraining set expansionapproach. Obviously
these auxiliary training examples need to be good estimates of the
actual interaction status of the corresponding object pairs, for expan-
ding the training sets by wrong examples could further worsen the
learned models. We propose two methods for generating reliable
examples:prediction propagationandkernel initialization.

3.1 Prediction propagation (pp)
Supposev1 andv2 are two objects, wherev1 has sufficient training
examples whilev2 does not have. We first train the local model for
v1. If the model predicts with high confidence thatv1 interacts with
v2, thenv1 can later be used as a positive example for training the
local model ofv2. Alternatively, if the model predicts with high
confidence thatv1 does not interact withv2, v1 can be used as a
negative example for training the local model ofv2.

This idea is based on the observation that high confidence pre-
dictions are more likely correct. For example, if the local models
are support vector machines, the predictions for objects far away
from the separating hyperplane are more likely correct than those
for objects falling in the margin. Therefore, to implement the idea,
each prediction should be associated with a confidence value obtai-
ned from the local model. When expanding the training sets of other
objects, only the most confident predictions should be involved.

We use support vector regression (Smola and Schölkopf, 2004)
to produce the confidence values. When training the local model
of an objectvi, the original positive and negative examples of it
are given labels of 1 and -1 respectively. Then a regression model is
constructed to find the best fit. Objects close to the positive examples
will receive a regressed value close to 1, and they correspond to
objects that are likely to interact withvi. Similarly, objects close
to the negative examples will receive a regressed value close to -1,
and they correspond to objects that are likely to not interact with
vi. For other objects, the model is less confident in telling whether
they interact withvi. Therefore the predictions with large positive
regressed values can be used as positive examples for training other
local models, and those with large negative regressed values can
be used as negative examples, where the absolute regressed values
represent the confidence.

Each time we usep% of the most confident predictions to expand
the training sets of other objects, where the numbers of new positive
and negative examples are in proportion to the ratio of positive and
negative examples in the original training sets. The parameterp is
called the training set expansion rate.

To further improve the approach, we order the training of local
models so that objects with more (original and augmented training
examples) are trained first, as the models learned from more training
examples are generally more reliable. Essentially this is handling

the uneven distribution of training examples by propagating know-
ledge from the information-rich regions (objects with many training
examples) to the information-poor regions (objects with no or few
training examples).

Theoretically prediction propagation is related to co-training (Blum
and Mitchell, 1998), which uses the most confident predictions of a
classifier as additional training examples of other classifiers. The
major differences are that in co-training, the classifiers are to make
predictions for the same set of data instances, and the classifiers are
complementary to each other due to the use of different data featu-
res. In contrast, in prediction propagation, each model is trained for
a different object, and the models are complementary to each other
due to the use of different training examples.

Instead of regression, one can also use support vector classi-
fier (SVC) to determine the confidence values, by measuring the
distance of each object from the separating hyperplane. Since we
only use the ranks of the confidence values to deduce the auxiliary
examples but not their absolute magnitudes, we would expect the
results to be similar. We implemented both versions and tested them
in our experiments. The two sets of results are indeed comparable,
with SVR having slightly higher accuracy on average. In the experi-
ment section we report the results for SVR, and the results for SVC
can be found at the supplementary web site.

3.2 Kernel initialization (ki)
The prediction propagation method is effective when some objects
have sufficient input training examples at the beginning to start the
generation of auxiliary examples. Yet if all objects have very few
input training examples, even the object with the largest training
sets may not be able to form a local model that can generate accurate
auxiliary examples.

An alternative way to generate auxiliary training examples is to
estimate the interaction status of each pair of objects by its simila-
rity value given by the input kernel. This is in line with the idea of
the direct approach, that object pairs with a larger similarity value
are more likely to interact. However, instead of thresholding the
similarity values to directly give the predictions, they are used only
to initialize the training sets for learning the local models. Also, to
avoid generating wrong examples, only the ones with the largest and
smallest similarity values are used, which correspond to the most
confident predictions of the unsupervised direct method.

For each object,p% of the objects with the largest/smallest simi-
larity values given by the kernel are treated as positive/negative
training examples in proportion to the positive and negative examp-
les in the original training sets. These auxiliary examples are then
combined with the original input examples to train the local models.

The kernel initialization method can be seen as adding a special
prior to the object pairs, which assigns a probability of 1 to the most
similar pairs of each object and 0 to the most dissimilar pairs. We
have also tried normalizing the inner products to the [0,1] range and
using them directly as the initial estimate of the confidence of inter-
action. Yet the performance was not as good as the current method,
which could be due to the large variance of confidence values of the
object pairs with moderate similarity.

The two training set expansion methods fall within the class of
semi-supervised learning methods (Chapelleet al., 2006), which
make use of both the training examples and some information about
all data instances to learn the model. Prediction propagation exploits
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Table 1. List of datasets used in the comparison study. Each row cor-
responds to a dataset from a publication in the Source column, and is
turned into a kernel using the function in the Kernel column, as in previous
studies (Yamanishiet al., 2004; Bleakleyet al., 2007).

Code Data type Source Kernel
phy Phylogenetic profiles COG v7 (Tatusovet al., 1997) RBF (σ=3,8)
loc Sub-cellular localization (Huhet al., 2003) Linear
exp-gasch Gene expression (Gaschet al., 2000) RBF (σ=3,8)

(environmental response)
exp-spellman Gene expression (Spellmanet al., 1998) RBF (σ=3,8)

(cell-cycle)
y2h-ito Yeast two-hybrid (Itoet al., 2000) Diffusion (β=0.01)
y2h-uetz Yeast two-hybrid (Uetzet al., 2000) Diffusion (β=0.01)
tap-gavin Tandem affinity purification (Gavinet al., 2006) Diffusion (β=0.01)
tap-krogan Tandem affinity purification (Kroganet al., 2006) Diffusion (β=0.01)
int Integration Summation

the information about each object pair produced by other local
models to help train the current local model. Kernel initialization
utilizes the similarity between objects in the feature space to place
soft constraints on the local models, that the objects most similar to
the current object should be put in the positive class and those most
dissimilar to the current object should be put in the negative class.

3.3 Combining the two methods (pp+ki)
Since kernel initialization is applied before learning while predic-
tion propagation is applied during learning, the two can be used in
combination. In some cases it leads to additional performance gain
in our experiments.

4 PREDICTION ACCURACY

4.1 Data and setup
To test the effectiveness of the training set expansion approach,
we compared its prediction accuracy with the other approaches on
several protein-protein interaction networks of the yeast Saccharo-
myces cerevisiae from BioGRID, DIP, MIPS and iPfam. We report
below in detail the results on the BioGRID-10 dataset, which inclu-
des all yeast physical interactions in BioGRID from small-scale
studies that report no more than 10 interactions. The cutoff was
chosen so that the network is large enough to have relatively few
missing interactions, while small enough to run the different algo-
rithms in reasonable time. We have also tested the methods on a high
quality but smaller dataset (DIPMIPS iPfam), and a larger dataset
(BioGRID-100) that is believed to contain few missing interacti-
ons, but is too large that the pairwise kernel method could not be
tested as it caused our machine to run out of memory. The details
of the datasets and the complete sets of results can be found at the
supplementary web site.

We tested the performance of the different approaches on various
kinds of genomic data features, including phylogenetic profiles, sub-
cellular localization and gene expression datasets using the same
kernels and parameters as in previous studies (Yamanishiet al.,
2005; Bleakleyet al., 2007). We also added in datasets from tan-
dem affinity purification with mass spectrometry using the diffusion
kernel, and the integration of all kernels by summing them after nor-
malization, as in previous studies (Yamanishiet al., 2005; Bleakley
et al., 2007). The list of datasets used is shown in Table 1.

We performed ten-fold cross validations and used the area under
the receiver operator characteristic curve (AUC) as the performance

metric. The cross validations were done in two different modes.
In the first mode, as in previous studies (Yamanishiet al., 2004;
Bleakleyet al., 2007), the proteins were divided into ten sets. Each
time one set was left out for testing, and the other nine were used for
training. All known interactions with both proteins in the training set
were used as positive training examples. As required by some of the
previous approaches, the sub-network involving the proteins in the
training set was assumed completely known (Figure 1(c)). As such,
all pairs of proteins in the training set not known to interact were
regarded as negative examples. All pairs of proteins with exactly one
of the two proteins in the training set were used as testing examples
(light gray entries in Figure 1(c)). Pairs with both proteins not in the
training set were not included in the testing sets (dark gray entries
in Figure 1(c)), as the original local modeling method cannot make
such predictions.

Since all protein pairs in the submatrix are either positive or nega-
tive training examples, there areO(n2) training examples in each
fold. In the pairwise kernel approach, this translates to a kernel
matrix withO(n4) elements. It is in the order of1012 for 1,000 pro-
teins, which is too large to compute and to learn the SVC and SVR
models. We therefore did not include the pairwise kernel method in
the experiments that used the first mode of cross-validation.

Since some protein pairs treated as negative examples may
actually interact, the reported accuracies may not completely reflect
the absolute performance of the methods. However, as the tested
methods were subject to the same setting, the results are still good
indicators of the relative performance of the approaches.

In the second mode of cross-validation, we randomly sampled
protein pairs not known to interact to form a negative training set
with the same size as the positive set, as in previous studies (Ben-
Hur and Noble, 2005; Qiu and Noble, 2008). Each of the two sets
was divided into ten subsets, which were used for left-out testing
in turn. The main difference between the two modes of cross-
validation is that the train-test split is based on proteins in the
first mode and protein pairs in the second mode. Since the trai-
ning examples do not constitute a complete submatrix, the kCCA,
kML and em methods cannot be tested in the second mode. The
second mode represents the more general case, where the positive
and negative training examples do not necessarily form a complete
sub-network.

We used the Matlab code provided by Jean-Philippe Vert for the
unsupervised direct, kCCA, kML and em methods with the first
mode of cross-validation. We implemented the other methods with
both the first and second modes of cross-validation. We observed
almost identical accuracy values from the two implementations of
the direct approach in the first mode of cross-validation with the
negligible differences due only to random train-test splits, which
confirms that the reported values from the two sets of code can
be fairly compared. For the pairwise kernel approach, we used the
kernel in Equation 1.

We used theε-SVR and C-SVC implementations of the Java ver-
sion of libsvm (Chang and Lin, 2008). In a preliminary study, we
observed that the prediction accuracy of SVR is not much affec-
ted by the value of the termination thresholdε, while for both SVR
and SVC the performance is quite stable as long as the value of the
regularization parameter C is not too small. We thus fixed both para-
meters to 0.5. ForPP andKI, we used a grid search to determine
the value of the training set expansion ratep.
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Table 2. Prediction accuracy (percentage of AUC) of the different approa-
ches on the BioGRID-10 dataset. The best approach for each kernel and each
mode of cross-validation is in bold face.

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int
Mode 1
direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
local+ki 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59
Mode 2
direct 59.99 67.81 66.18 59.22 54.02 54.64 62.28 63.69 72.34
Pkernel 72.98 69.84 78.61 77.30 57.01 54.65 71.16 70.36 87.34
local 76.89 78.73 79.72 77.32 72.93 72.89 68.81 73.15 82.82
local+pp 77.71 80.71 82.56 80.62 74.74 74.41 76.36 75.12 88.78
local+ki 76.76 78.73 80.62 76.44 73.39 72.76 72.42 76.22 86.12
local+pp+ki 77.45 80.57 81.93 78.92 74.14 74.01 75.59 76.59 88.56

4.2 Results
Since we use datasets different from the ones used in previous stu-
dies, the prediction results are expected to be different. To make
sure that our implementations are correct and the testing procedure
is valid, we compared our results on the DIPMIPS iPfam data-
set with those reported in Bleakleyet al. (2007) as the size of this
dataset is most similar to the one used by them. Our results (availa-
ble at the supplementary web site) display a lot of similarities with
those in Bleakleyet al. (2007). For example, in the first mode of
cross-validation, local modeling outperformed the other previous
approaches when object similarity was defined by phylogenetic pro-
files and yeast two-hybrid data. Also, the em method had the best
performance among all previous approaches with the integrated ker-
nel in both studies. We are thus confident that our results represent
a reliable comparison between the methods.

The comparison results for our main dataset, BioGRID-10, are
shown in Table 2. In the table pp, ki and pp+ki are written as
local+pp, local+ki and local+pp+ki, respectively, to emphasize that
the two training set expansion methods are used on top of basic
local modeling. Notice that the accuracies in the second mode of
cross-validation are in general higher. We examined whether this is
due to the presence of self-interactions in the gold-standard set of
the second mode of cross-validation but not in the first mode, by
removing the self-interactions and re-running the experiments. The
results (available at the supplementary web site) suggest that the per-
formance gain due to the removal of self-interactions is too small to
explain the performance difference between the two modes of cross-
validation. The setting in the second mode may thus correspond to
an easier problem. The reported accuracies of the two modes should
therefore not to be compared directly.

From the table, the advantages of the training set expansion
methods over basic local modeling are clearly seen. In all cases,
the accuracy of local modeling was improved by at least one of
the expansion methods, and in many cases all three combinations
(pp, ki and pp+ki) performed better than basic local modeling. With
training set expansion, local modeling outperformed all the other
approaches in all 9 datasets.

Inspecting the performance of local modeling without training
set expansion, it is observed that although local modeling usually
outperformed the other previous methods, its performance with the
integration kernel was unsatisfactory. This is probably due to over-
fitting. When kernels are summed, the resulting embedded space
is the direct product of the ones defined by the kernels (Schölkopf

et al., 2004). Since the final kernel used for the integrated dataset
is a summation of 8 kernels, the corresponding embedded space
is of very high dimension. With the high flexibility and the lack
of training data, the models produced by basic local modeling
were probably overfitted. In contrast, with the auxiliary training
examples, the training set expansion methods appear to have largely
overcome the problem.

Comparing the two training set expansion methods, in most cases
prediction propagation resulted in a larger performance gain. This
is reasonable since the input training examples were used in this
method, but not in kernel initialization.

To better understand how the two training set expansion methods
improve the predictions, we sub-sampled the gold-standard network
at different sizes, and compared the performance of local mode-
ling with and without training set expansion using the second mode
of cross-validation. The results for two of the kernels are shown
in Figure 3, while the whole set of results can be found at the
supplementary web site.
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Fig. 3. Prediction accuracy at different gold-standard set sizes.

In general training set expansion improved the accuracy the most
with moderate gold-standard set sizes, at around 3000 interactions.
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For prediction propagation, this is expected since when the training
set was too small, the local models were too inaccurate that even
the most confident predictions could still be wrong, which made
propagation undesirable. On the other hand, when there were many
training examples, there were few missing interactions, so that the
augmented training examples became relatively less important. The
latter argument also applies to kernel initialization, that it resulted
in larger performance gain when the gold-standard set was not too
large. However, it is surprising to see that using the integrated ker-
nel (Figure 3(a)), kernel initialization resulted in a drop in accuracy
when there were only 500 interactions. Since the kernel remained
the same at different gold-standard set sizes, one would expect to see
a stable performance gain for kernel initialization regardless of the
size of the gold-standard set. This stable performance gain is indeed
observed when the Gasch or phylogenetic profile kernel was used
(Figure 3(b) and Figure S1). In contrast, prediction propagation,
being dependent on the raw accuracy of local modeling, performed
poorly when there were only 500 interactions for all 9 datasets. This
suggests that when the dataset is expected to contain a lot of missing
interactions, kernel initialization is potentially more useful, but it
also depends on the feature used in learning. On the other hand, pre-
diction propagation is more useful when the dataset contains enough
interactions for local modeling to achieve a reasonable accuracy.

5 ANALYSIS
With the observed performance gain of training set expansion, we
would like to know what kind of correct predictions could it make
that were ranked low by other methods. To answer the question,
for each known interaction in the gold-standard positive set of
BioGRID-10, we computed the rank of it in the predictions made
by local+pp and local+ki using the integrated kernel in the first
mode of cross-validation. Then we computed the highest rank of
the interaction given by kCCA, kML, em and local, and calculated
the difference between the two. If the former is much higher than
the latter (i.e., there is a large rank difference), then the interaction
is uniquely identified by training set expansion but not by any of the
four other methods.

Among the 2,880 interactions in the gold-standard set that were
tested by both local+pp and the four comparing methods, the ranks
of 2,121 of them are higher in the predictions made by local+pp
than in any of the four methods. For each of them, we computed
the minimum degree (number of known interactions in the gold-
standard set) of the two interacting proteins as an indicator of the
number of available training examples for the pair. Then we corre-
lated the minimum degree with the rank difference. The resulting
graph (Figure 4) shows a significant negative correlation (Spearman
correlation= −0.38, p < 10−16), which confirms that the correct
predictions made by local+pp that were missed by the other four
methods correspond to the protein pairs with few known examples.
We have also tested the average degree instead of the minimum, and
the Pearson correlation instead of Spearman correlation. The results
all lead to the same conclusion (Figure S2).

A concrete example of a gold-standard interaction predicted by
local+pp but ranked low by the four methods is the one between
SEC11 and SPC1. They are both subunits of the signal peptidase
complex (SPC), and are reported to interact in BioGRID according
to multiple sources. In the BioGRID-10 dataset, SPC1 is the only
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Fig. 4. Correlating the number of gold-standard examples and the rank
difference between local+pp and the four methods.

known interaction partner of SEC11, while SPC1 only has one other
known interaction (with SBH2). The extremely small numbers of
known examples make it difficult to identify this interaction. Indeed,
the best of the four previous methods could only give it a rank at the
74th percentile, indicating that they were all unable to identify this
interaction. In contrast, local+pp was able to rank it at the top 7th
percentile, i.e., with a rank difference of 67% (see Figure 4). This
example illustrates that interactions with very few known examples,
while easily missed by the previous methods, could be identified by
using prediction propagation.

For local+ki, among the 2,880 commonly tested gold-standard
interactions, 2,025 received a higher rank from it than from any
of the four comparing methods. Again, there is a negative corre-
lation between the rank difference and the minimum degree and
average degree (Figure S2), which shows that kernel initialization
is also able to predict interactions for proteins with few training
examples. In addition, there is a positive correlation with mode-
rate significance between the rank difference and the similarity
between the interacting proteins according to the kernel (Figure
S2, Spearman correlation= 0.04, p = 0.04), which is expec-
ted as the kernel initialization method uses protein pairs with high
similarity as auxiliary positive training examples. Interestingly, for
local+pp, a negative correlation is observed between the rank dif-
ference and protein similarity (Figure S2), which suggests that the
prediction propagation method is able to identify non-trivial interac-
tions, where the two interacting proteins are not necessarily similar
according to the kernel.

6 DISCUSSION
Training set expansion is a general concept that can also be applied
to other problems and used with other learning methods. The lear-
ning method is not required to make very accurate predictions for
all object pairs, and the data features do not need to define an object
similarity that is very consistent with the interactions. As long as the
most confidentpredictions are likely correct, prediction propagation
is useful, and as long as the most similar objects are likely to inter-
act and the most dissimilar objects are unlikely to interact, kernel
initialization is useful. In many biological applications at least one
of these requirements is satisfied.
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7 CONCLUSION
In this article we have described the semi-supervised training set
expansion methodsprediction propagationandkernel initialization
that alleviate the overfitting problem of local modeling while pre-
serving its modeling flexibility. The prediction propagation method
learns from the information-rich regions, and uses the learned know-
ledge to help the information-poor regions. It is conceptually related
to co-training. The kernel initialization method treats the most simi-
lar and dissimilar object pairs as positive and negative training
examples respectively. Prediction results on several high quality
protein-protein interaction networks from yeast show great improve-
ments over basic local modeling by these methods, and the resulting
algorithms outperformed all other methods using any of the 9 geno-
mic features. We have also identified cases that clearly illustrate the
effectiveness of the training set expansion methods in helping the
construction of local models. The concept of training set expansion
can be applied to other problems with small or uneven training sets.
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