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Abstract
Background: Peptide Recognition Domains (PRDs) are commonly found in signaling proteins. They mediate

protein-protein interactions by recognizing and binding short motifs in their ligands. Although a great deal is

known about PRDs and their interactions, prediction of PRD specificities remains largely an unsolved problem.

Results: We present a novel approach to identifying these Specificity Determining Residues (SDRs). Our

algorithm generalizes earlier information theoretic approaches to coevolution analysis, to become applicable to

this problem. It leverages the growing wealth of binding data between PRDs and large numbers of random

peptides, and searches for PRD residues that exhibit strong evolutionary covariation with some positions of the

statistical profiles of bound peptides. The calculations involve only information from sequences, and thus can be

applied to PRDs without crystal structures. We applied the approach to PDZ, SH3 and kinase domains, and

evaluated the results using both residue proximity in co-crystal structures and verified binding specificity maps

from mutagenesis studies. Our predictions were found to be strongly correlated with the physical proximity of
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residues, demonstrating the ability of our approach to detect physical interactions of the binding partners. Some

high-scoring pairs were further confirmed to affect binding specificity using previous experimental results.

Combining the covariation results also allowed us to predict binding profiles with higher reliability than two other

methods that do not explicitly take residue covariation into account.

Conclusions: The general applicability of our approach to the three different domain families demonstrated in

this paper suggests its potential in predicting binding targets and assisting the exploration of binding

mechanisms.

Background
Protein Recognition Domains (PRDs) and Specificity Determining Residues (SDRs)

Peptide recognition domains are key elements on proteins with many roles in central signaling

pathways [1]. PRDs are involved in many diseases and are a focus of drug discovery efforts [2]. Some

viruses co-opt host PRDs via mimicry, emphasizing their relevance to human diseases [3–5]. Representative

PRDs include PDZ, SH3 and kinase domains. These domains recognize short (usually around 7-10 amino

acids long) motifs in their target proteins. Such motifs often lie in unstructured regions [6] and hence

resemble peptides in their conformational flexibility. In particular, PDZ domains recognize hydrophobic

C-terminal tails, SH3 domains recognize proline-rich motifs, and kinase domains bind several different

classes of motifs; for instance, basophilic kinases bind arginine-rich motifs. As many PRDs are well

behaved in solution, they are ideal model systems for studying protein-protein interactions and ligand

binding specificity. New approaches, namely phage display [7], protein or peptide arrays [8–10] and

oriented peptide libraries [11] have greatly facilitated the measurement of specificities and produced an

hitherto unimaginable wealth of binding data. Despite these advances, the residues within the domains

that determine their binding specificity have only partly been elucidated. Such Specificity Determining

Residues (SDRs) [12,13] can be identified using dedicated experiments involving site-directed mutagenesis

and subsequent measurement of specificity. For example, recent studies have directly tested effects of point

mutations in kinases [14] and PDZ domains [7]. However, because of the size of the sequence space to be

covered, exhaustive experimental search is infeasible. While co-crystal structures of PRDs with the bound

ligand are often used to prioritize residues, identification of SDRs remains a complex problem: On the one

hand, close proximity to the ligand does not necessarily implicate a residue in specificity determination.

On the other hand, a residue that is far away from the ligand can also affect specificity due to secondary
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effects on the binding site [13,15]. Hence, computational methods are needed to select and prioritize the

positions to be tested through mutagenesis. Meanwhile, the aforementioned wealth of specificity data offers

ample resources to be computationally analyzed for information about SDRs.

Currently, there are two major classes of computational approaches for SDR identification: First, there are

structure driven approaches, making use of physical properties from protein structures, such as the

hydration site free energies displaced by ligand atoms upon binding [16]. The second class of approaches

adopts a statistical approach, and identifies SDRs by looking for sites that are conserved across or within

functional groups [17], or more conserved in orthologs than paralogs [12]. Our method also takes on a

statistical approach, the systematic nature of which enables the potential identification of non-local

interactions between residues that are significant for peptide binding. Due to the lack of large-scale binding

data previously, most current statistical methods attempt to detect SDRs based only on conservation

signals from multiple sequence alignments of the PRDs. These predictions are noisy as the conservation of

a residue could be due to roles other than binding specificity determination. Hence, these approaches do

not make optimal use of currently available data. Conversely, utilizing the information about the actual

bound peptide profiles from the recent large-scale binding datasets has the potential to boost the power of

new predictions. In this paper we demonstrate how these new datasets can be incorporated in the search

for SDRs. Previously we explored this idea using a proof-of-principle correlation-based method as part of a

larger experimental study [14]. Here, we develop a new approach that is based on a novel formalism of

mutual information.

Traditional and generalized covariation methods

Our approach is based on the notion that SDRs would covary with the binding specificity. The concept of

covariation has first been used to study internal residue contacts in proteins [18,19]. It has subsequently

been used in the identification of energetically coupled residues [20], coevolution of proteins with their

interaction partners [21–25], protein fold [26], functionally or structurally coupled residues within a

protein [27,28] and protein fusion [29]. The basic idea is to look for two sites in a multiple sequence

alignment (MSA), or a pair of MSAs when studying the interaction between two proteins, that exhibit

coordinated changes. Such covariation could suggest functional or structural dependency between the two

sites, as there exists evolutionary pressure against their independent evolution. In the context of SDR

identification, the covariation between a residue in the PRD and a residue in the bound peptide could

imply its role in mediating the binding.
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Many computational methods have been proposed for identifying covarying sites, including correlation

scores [18,30], Statistical Coupling Analysis (SCA) [20,31], likelihood methods [32,33], information

theoretic methods [27,34], independence tests [35,36] and Bayesian approaches [37]. However, these

methods cannot be applied directly to the identification of SDRs, because in a typical protein-peptide

binding dataset [13,38], each PRD does not bind to only one single peptide sequence. Instead, a PRD is

associated with a binding profile, often represented in the form of a position weight matrix (PWM). In

other words, instead of having two MSAs as in a typical covariation study, SDR identification adopts a

more general setting with one MSA of PRDs on the one hand, and a list of respective PWMs on the other

hand (Figure 1). Furthermore, a multitude of techniques have been developed in recent studies to handle

various issues in the application of the covariation methods [34,39–42], such as uneven representation of

sequences in the MSA and overly diverse sites. These techniques also need to be extended in order to be

applied in the current more generalized setting. In this paper we present a novel method to determine

SDRs using an information theoretic approach. For each site from the MSA of the PRDs and each site

from the aligned peptide PWMs, the method produces a numeric covariation score, which can be used as

an indicator of the likelihood that the two sites are involved in binding specificity. Aggregating the scores

could also suggest which peptides a PRD is likely to bind. Our approach uses only information from

sequences, and thus can be applied to PRDs without known crystal structures.

Methods
Entropy and mutual information

Our method for identifying SDRs is based on an information theoretic measure called mutual information,

which has been used in detecting covarying residues in the traditional setting [27,34]. We first give some

general definitions here, and then discuss how they are used in the identification of SDRs in the next

subsection. Given a discrete random variable X with a distribution p(x) over the domain of X, D(X), the

entropy of X is defined as

H(X) = −
∑

x∈D(X )

p(x) log p(x), (1)

where log 0 is defined as 0, the asymptotic value of log(x) towards 0. In the general definition of entropy,

the base of the logarithm can be set to any value. In analyzing protein sequences, where D(X) is the set of

20 amino acid residues, it is convenient to use 20 as the base so that the entropy value is always between 0
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                Site

Sequence 1 2 3 4 5 6
I V E T V T A
II E K V I K A
III V K T M E A
IV I E Y A K A

            Site

Residue 1 2 3 4 5
A 0.00 0.13 0.01 0.00 0.12
C 0.00 0.70 0.01 0.00 0.02
D 0.00 0.01 0.01 0.00 0.21
…
Y 0.95 0.01 0.01 0.00 0.02

…

            Site

Residue 1 2 3 4 5
A 0.09 0.00 0.00 0.19 0.00
C 0.02 0.00 0.00 0.01 0.00
D 0.02 0.94 0.00 0.01 0.00
…
Y 0.02 0.00 0.12 0.01 0.96

…

            Site

Residue 1 2 3 4 5
A 0.11 0.20 0.10 0.00 0.00
C 0.00 0.00 0.00 0.78 0.00
D 0.01 0.00 0.00 0.00 0.00
…
Y 0.00 0.04 0.00 0.00 0.00

…

            Site

Residue 1 2 3 4 5
A 0.00 0.13 0.00 0.18 0.01
C 0.00 0.01 0.91 0.01 0.01
D 0.00 0.07 0.00 0.04 0.01
…
Y 0.98 0.01 0.00 0.01 0.04

…

MSA of Peptide Recognition
Domains (PRDs)

PWMs of bound peptides

H(X) – H(X,Y) + H(Y)MI(X,Y) =
UC(X,Y) = MI(X,Y) / H(X)

Figure 1: An illustration of our method for finding specificity determining residues (SDRs).
The sequences of the peptide recognition domains (PRDs) are aligned to form a multiple sequence alignment
(MSA). Each PRD has an associated position weight matrix (PWM) of the peptides that it binds, and the
PWMs are also aligned. The entropy of each MSA site X and each PWM site Y is computed and combined
to give the mutual information (MI) and uncertainty coefficient (UC) scores.
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and 1 [43].

Similarly, if we have two random variables X and Y with a joint distribution p(x, y), the joint entropy of

them is defined as

H(X, Y ) = −
∑

x∈D(X)

∑
y∈D(Y )

p(x, y) log p(x, y) (2)

Based on the concepts of entropy and joint entropy, the mutual information between two random variables

X and Y is defined as follows:

MI(X, Y ) = H(X) + H(Y )−H(X, Y ) (3)

Adapting mutual information to the identification of SDRs

Suppose we are given an MSA A with n rows and m columns. Each row corresponds to a PRD sequence

and each column corresponds to a site of the alignment. We use Aij to denote the residue at site j of

sequence i. The residues at a site can be viewed as a sample drawn from a distribution of residues specific

to the site. Let Aj be a random variable for the residues at site j. Using Formula 1, we can calculate the

entropy of Aj by replacing p(x) with the sample distribution, pj(x), defined by the frequency of each

residue at the site:

pj(x) =
∑n

i=1 1(Aij = x)
n

(4)

where 1 is the indicator function with 1(true) = 1 and 1(false) = 0.

The entropy can be interpreted as the uncertainty of which residue we would encounter at the site if we

randomly draw a sequence from the MSA, where uncertainty here is mathematically quantified by the

number of bits needed to encode the information on average. A completely conserved site has an entropy of

0, and indeed there is no uncertainty as the residue being drawn must always be the same. A site with

equal probability of all 20 residues has the maximum possible entropy of 1. In general, a more diverse site

has a larger entropy.

Similarly, suppose we are given a set of n aligned PWMs W each with w sites. The i-th PWM represents

the peptides bound by the i-th PRD in the MSA (Figure 1). Denote Wik(y) as the probability of residue y

at the k-th site of the i-th PWM. Let Wk be a random variable for the residues at site k. Again, we can
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calculate the entropy of Wk using Formula 1 by replacing p(x) with the expected probability of y in the

different PWMs, pk(y), assuming a uniform distribution of the observed sequences:

pk(y) =
∑n

i=1 Wik(y)
n

(5)

Now, we can compute the joint entropy of site j in the MSA and site k in the PWMs using Formula 2,

based on the sample distribution of Aj and the probabilities Wik(y):

pj,k(x, y) =
∑n

i=1 1(Aij = x)Wik(y)
n

(6)

The joint entropy measures the uncertainty of which two residues we would encounter at MSA site j and

PWM site k if we randomly draw a sequence from the MSA and get its corresponding PWM.

Finally, we can compute the mutual information between MSA site j and PWM site k using Formula 3.

Since H(X, Y ) is the uncertainty of the two sites that persists even when we consider them together,

subtracting it from H(X) + H(Y ) gives the uncertainty that is eliminated by considering the two sites

together. In other words, mutual information measures the information shared by the two sites. A larger

mutual information indicates a stronger dependency between them. This could indicate a functional or

structural relationship between the two sites. For example, it could suggest that the two sites coevolve in

the sense that when the residue at the MSA site is changed, binding strength is restored by having a

corresponding change at the PWM site.

Handling uneven sequence representation

In many cases, the input MSA for studying residue covariation has an uneven representation of sequences

from different clades. For example, it is common to have more sequences from model organisms or species

that are better studied, and fewer sequences from other species. As a result, the MSA could contain many

sequences that are highly similar, and few that are significantly different. Each of the highly similar

sequences contributes little additional information, but still has an equal amount of influence on the

calculation of mutual information under the assumption of a uniform distribution of the observed

sequences. Consequently, they could mask the novel information from low abundance sequences.

To counteract this effect, we associate weights with the sequences so that the more unique ones receive

higher weights. Statistically, it is equivalent to placing a prior distribution to the observed sequences if the
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weights are normalized to take values between 0 and 1 and have a sum of 1. Here we assume there is an

external procedure for determining the weights. For instance, one possible way is to construct a

phylogenetic tree from the sequences in the MSA, and then recursively distribute the total weight to

different branches of the tree, so that each sequence in the crowded branches will receive a smaller share of

weights [44]. Suppose the procedure assigns αi as the weight of sequence i, we can redefine pj(x), pk(y)

and pj,k(x, y) as follows:

pj(x) =
∑n

i=1 1(Aij = x)αi∑n
i=1 αi

(7)

pk(y) =
∑n

i=1 αiWik(y)∑n
i=1 αi

(8)

pj,k(x, y) =
∑n

i=1 1(Aij = x)αiWik(y)∑n
i=1 αi

(9)

Entropy, joint-entropy and mutual information can then be calculated using these new definitions of

probabilities.

Handling uneven site conservation

A potential issue of the mutual information measure is that a pair of unrelated sites could have even higher

mutual information than a pair of truly covarying sites if the unrelated sites are individually much more

diverse than the covarying sites. This is illustrated by the hypothetical example shown in Table 1. For

simplicity, suppose the sequences all have equal weights and the base of logarithms is 2. Sites 1 and 2 are

truly covarying. When site 1 changes from the non-polar residue alanine in sequences I and II to the polar

residue threonine in sequences III and IV, site 2 simultaneously changes from the non-polar residue valine

to the polar residue tyrosine. The entropy of each of the two sites is 1 and the mutual information between

them is also 1, the maximum possible value given the two individual entropy values. On the other hand,

sites 3 and 4 are random, unrelated sites. The entropy values of them are 2 and 1.5, respectively, and their

mutual information is 1.5, which is higher than the mutual information between sites 1 and 2 due to larger

entropy values of sites 3 and 4.

To deal with this problem, various kinds of normalization have been proposed to penalize overly diverse

sites [34]. We will focus on the uncertainty coefficient [45], which was found to be one of the best

normalized mutual information scores in our preliminary study. For an MSA site Aj and a PWM site Wk,

the uncertainty coefficient is defined as follows:
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Table 1: A hypothetical example MSA that illustrates the problem of uneven site conservation.
Sites 1 and 2 are truly covarying, while sites 3 and 4 are random and unrelated. However, as sites 3 and 4
have higher entropy values than sites 1 and 2, the resulting mutual information between sites 3 and 4 is also
higher than that between sites 1 and 2 (see main text for the calculations).

Sequence / Site 1 2 3 4
I A V A C
II A V C D
III T Y D E
IV T Y E C

UC(Aj ,Wk) =
MI(Aj ,Wk)

H(Aj)
(10)

We have also tried handling the problem using a statistical test. Specifically, we used mutual information

as the test statistic to calculate how unlikely it is to get a mutual information at least as large as the

observed one under the null hypothesis that the two sites are independent. The distribution of mutual

information can be obtained by permuting the residues of a site, or by using a chi-square approximation. It

was shown that when n is large, (2 ln 2n)MI(X, Y ) tends to have a chi-square distribution with

(|D(X )| − 1)2(|D(Y)| − 1)2 degrees of freedom [46,47]. It turns out that the results based on this statistical

test were not better than using the simple normalization approach. We thus focus on the use of the

uncertainty coefficient measure in handling uneven site conservation in the remaining of this paper.

Table 1 also demonstrates the tradeoff between the mutual information between two sites and their

individual conservation, both of which are indicators of their functional importance. One may try to derive

a measure that takes both into account, similar to what the Sequence Harmony method handles both the

conservation and similarity of two groups of residues simultaneously, for the problem of identifying

important residues that determine the functional differences of protein subfamilies [48]. We leave the

derivation of a new covariation measure to a future study.

Predicting the PWMs of bound peptides

One important use of the covariation scores is to contribute towards predicting the PWMs of bound

peptides. This can be done by aggregating the detected covariation signals. Suppose we are given a new

PRD sequence (the (n + 1)-th sequence) of the MSA M without the corresponding PWM of its bound

peptides. We would like to predict the PWM based on the n + 1 sequences in the MSA and the n known

PWMs. We investigate the use of the covariation scores in this problem by comparing a prediction
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methods that considers site covariation with two methods that do not.

A simple prediction method that does not take site covariation into account is to perform a weighted

averaged of the known PWMs, where the weights are based on the similarity of the new PRD sequence and

the original ones. Specifically, the probability of finding residue y at site k of the bound peptides of the

new PRD is predicted by the following formula:

Ŵ(n+1)k(y) =
∑n

i=1 s(i, n + 1)Wik(y)∑n
i=1 s(i, n + 1)

, (11)

where s(i, i′) is a similarity between sequences i and i′ in the MSA, such as their sequence identity:

s(i, i′) =

∑m
j=1 1(Mij = Mi′j)

m
(12)

Using the covariation scores, we propose an alternative way to define the similarity function. Each MSA

site receives a different weight in the calculation, where the weight depends on the covariation score

between the site and the target PWM site k. In other words, the similarity score s(i, i′) is replaced with a

new score sk(i, i′) that is specific to k:

Ŵ(n+1)k(y) =
∑n

i=1 sk(i, n + 1)Wik(y)∑n
i=1 sk(i, n + 1)

(13)

sk(i, i′) =

∑m
j=1 1(Mij = Mi′j)UC(Aj ,Wk)∑m

j=1 UC(Aj ,Wk)
, (14)

where the uncertainty coefficient UC(Aj ,Wk) is computed based on the n original sequences.

We also investigated if prediction accuracy can be improved by using a more complex model. Specifically,

we treated each MSA site as a categorical attribute and trained a regression tree model for each probability

value in the PWM. The models were then applied to the new sequence to predict the PWM of its bound

peptides. We implemented this method using REPTree of the Weka package [49].

To evaluate the effectiveness of the different methods, we performed left-out validation as follows. Each

time, we drew a random sample of PRDs to form the testing set. Each sequence in the testing set took

turn to take the role of the (n + 1)-th sequence. The sequences not included in the sample formed the

training set. These sequences were used to compute covariation scores and train prediction models. The

procedure was repeated 1,000 times for PDZ and SH3 and 50 times for kinase (due to the long running

time) with different random training-testing splits, and the average performance of the trained models on
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the testing sets was recorded. To eliminate near-identical sequences in the training and testing sets, for

sequences with 90% or more identity, we kept only one of them in the dataset before making the

training-testing splits. As most of the synthetic PDZ sequences (described below) are highly similar, we

excluded this dataset from this part of study.

Each predicted PWM was compared to the actual PWM, and a prediction error was computed as the

root-mean-square difference between their distributions per site:

e(Ŵ(n+1), W̃(n+1)) =

∑w
k=1

∑
y[Ŵ(n+1)k(y)− W̃(n+1)k(y)]2

w
, (15)

where Ŵ(n+1) and W̃(n+1) are the predicted and actual PWMs for the bound peptides of the testing

sequence, respectively, and the inner summation is taken over all 20 amino acid residues.

Results
Application of the method to PDZ, SH3 and kinase domains
Natural PDZ domains

We obtained 33 class I human and worm PDZ domains from a recent large-scale study on the specificity

map of PDZ domains [13]. Class I PDZ domains were defined by two positions on the ligand, with the

pattern X[T/S]XφCOOH , where X and φ represent a residue and a hydrophobe, respectively. In the same

study, a number of SDRs were experimentally determined, allowing us to validate our prediction results.

We focused on only one class of domains as the sequences in different classes are difficult to align due to

divergence. The pairwise sequence identity ranges from 0.13 to 0.87, with an average of 0.28.

The binding profile of each domain, in the form of a PWM, was obtained from phage display experiments

that expressed a random library of C-terminal peptides [13]. The domains were then aligned to form an

MSA using ClustalW [50] followed by manual corrections of some obvious errors. A phylogenetic tree of

the MSA sequences was constructed using Biopython’s Nexus module [51], and the tree was used to

produce sequence weights according to a described algorithm [44]. The uncertainty coefficient between each

MSA site and each site of the peptide PWMs was computed. To reduce noise and eliminate highly

conserved sites that provide little information about covariation, we considered only sites with no gaps [52]

and the most frequent residue occupying no more than half of the total sequence weights. This filtering

was also applied to the other domain families described below.

The remaining unfiltered site pairs were then evaluated in two ways. First, their uncertainty coefficients

were compared to their physical distances in the co-crystal structure 2H2C of ligand-bound human ZO-1
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PDZ1 domain [53] in PDB [54]. Although proximity does not necessarily mean functional or structural

dependency, it is usually used as a quick check in covariation studies [18,27,29,33]. It also provides a

complete and unbiased alternative to the more costly experimental validations.

Second, we examined the top-scoring site pairs, and compared them with known SDRs from a mutagenesis

study [13] in which ten sites of the ERBB2IP-1 domain were mutated and the corresponding changes of

peptide specificity reported. This comparison provides direct evaluation of our SDR identification

procedure on the subset of sites that were tested in the assay.

Synthetic PDZ domains

In a recent study, the mutagenesis study in Tonikian et al [13] was extended. A large amount of mutations

were introduced at the ten sites, resulting in 61 variations of the Erbin domain that are functional in

recognizing some C-terminal heptapeptides [55]. As with the natural PDZ domains, we compared the

uncertainty coefficients with the physical distances in the 2H2C PDB structure. Since the synthetic PDZ

domains are 100% conserved at sites other than the 10 selected ones, and have a specific set of mutations

at the 10 sites introduced by the mutagenesis experiments, their MSA exhibits some statistical properties

different from those of the natural PDZ domains.

SH3 domains

We obtained 23 yeast SH3 domains and the corresponding PWMs of the bound peptides from phage display

experiments from a recent study [38]. We aligned the PRDs based on a published structural alignment [15],

and aligned the peptide PWMs based on both the general PxxP pattern and some published

alignments [15,56]. The pairwise sequence identity ranges from 0.07 to 0.79, with an average of 0.24.

We applied the same prediction and evaluation procedures as in the case of PDZ, except that in this case

we did not have large-scale mutagenesis data, and therefore the prediction results were only evaluated

against the physical distances calculated from the crystal structure 1N5Z in PDB, which contains the yeast

Pex13 SH3 domain bound to a Pex14 peptide [57], and the findings of some previous studies.

Kinase domains

We also obtained 149 serine/threonine protein kinase domains from four species (S. cerevisiae, H. sapiens,

S. pombe and D. discoideum) and the PWMs of their corresponding bound peptides [14]. The MSA was

made using MUSCLE [58] followed by some manual corrections. The prediction results were evaluated
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against distances calculated from the crystal structure 1ATP of mouse catalytic subunit of

cAMP-dependent protein kinase complexed with Mn-ATP and a peptide inhibitor [59] in PDB, and some

findings in previous studies. The pairwise sequence identity ranges from 0.09 to 0.92, with an average of

0.23.

Covariation score correlates with physical proximity and reconfirms previous findings

The covariation score between two sites is found to correlate negatively with the physical distance between

them, regardless of the exact definition of the distance measure (see Figures 2, 3 and 4 for the results when

the distance between residue centers, alpha carbon atoms and closest atoms minus their van der Waals’

radii were used, respectively. All p-values were computed using Fisher transformation [60]). For PDZ, we

have also compared the correlations based on several other PDZ structures, and observed similar patterns

(Figure 5).

Natural PDZ, Pearson correlation= -0.18, p=1.8e-3
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Synthetic PDZ, Pearson correlation= -0.34, p=5.6e-3
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SH3, Pearson correlation=-0.11, p=0.01
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Kinase, Pearson correlation=-0.31, p=5.7e-24
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Figure 2: Correlation between covariation score and physical proximity between each PRD site
and each PWM position for the three types of PRDs when distances are computed between
residue centers.

Since low-scoring pairs are more subject to noise, here for each PRD site, we focus on the peptide site that
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Natural PDZ (all pairs), Pearson correlation= -0.27, p=4.6e-6
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Synthetic PDZ (all pairs), Pearson correlation= -0.34, p=4.6e-3
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SH3 (all pairs), Pearson correlation=-0.17, p=5.1e-4
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Kinase (all pairs), Pearson correlation=-0.30, p=4.5e-23
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Figure 3: Correlation between covariation score and physical proximity between each PRD site
and each PWM position for the three types of PRDs when distances are computed between
alpha carbon atoms.
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Natural PDZ (all pairs), Pearson correlation= -0.17, p=2.3e-3
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Synthetic PDZ (all pairs), Pearson correlation= -0.33, p=6.2e-3
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SH3 (all pairs), Pearson correlation=-0.06, p=0.12
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Kinase (all pairs), Pearson correlation=-0.33, p=2.3e-27
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Figure 4: Correlation between covariation score and physical proximity between each PRD site
and each PWM position for the three types of PRDs when distances are computed between
the closest atoms minus their van der Waal’s radii.
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Figure 5: Correlation between covariation score and physical proximity between each PRD site
of a PDZ domain and each PWM position when distances are computed between alpha carbon
atoms in four different PDB structures.
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gives the highest uncertainty coefficient with it (Figure 6). The site pairs with the highest covariation

scores are listed in Table 2.

Natural PDZ, Pearson correlation=-0.51, p=4.7e-4
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Kinase, Pearson correlation=-0.44, p=6.0e-6
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Figure 6: Correlation between covariation score and physical proximity between each PRD site
and its highest-scoring peptide PWM position for the four types of PRDs. Selected top-scoring
pairs discussed in the text are circled. The correlation for Synthetic PDZ was not statistically significant
due to the small number of data points involved.

For natural PDZ domains, the highest-scoring pair (circled) is between Leu60 (β3:α1-1, structural

nomenclature from [53]) of the PDZ domain in 2H2C and position -1 of the binding motif on the bound

peptide. These residues are in physical contact in the dimer structure (Figure 7, all visualization produced

using VMD [61]). Interestingly, it has been reported that the side chain at β3:α1-1 can contribute to the

recognition of the -1 position of the motif [53], and in the crystal structure from Shank1, a salt bridge is

observed between Asp(β3:α1-1) of the PDZ domain and Arg(-1) of the ligand [62]. Our covariation

analysis has thus identified these verified SDRs of the PDZ domains in silico.

For SH3 domains, the highest-scoring pair is between Asn71 of the SH3 domain and Leu7 (P+2 residue) of

the ligand in 1N5Z. These residues are in close physical proximity in the crystal structure (Figure 8).

Interestingly, we found that the MSA residues in the first (Asn71), third (Ile73) and fourth (Tyr72)
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Table 2: Site pairs with the highest covariation scores. For each site on the PRD, only the site on the
peptide with the highest score is shown. For synthetic PDZ domains, only 10 sites have variations and among
them 2 were filtered, leaving only 8 valid sites. All sites are indexed according to their residue numbers in
the reference PDB structures.

Domain family Natural PDZ Synthetic PDZ SH3 Kinase
Ref. PDB structure 2H2C 2H2C 1N5Z 1ATP
Rank PRD Peptide PRD Peptide PRD Peptide PRD Peptide
1 Leu60 Trp119 His88 Thr118 Asn71 Leu7 Tyr229 Ile22
2 Val55 Thr117 Ala37 Thr117 Leu34 Leu7 Leu205 Ile22
3 Ala76 Thr117 Ser39 Thr117 Ile73 Leu7 Leu198 Ile22
4 Pro30 Trp119 Leu60 Thr117 Tyr72 Leu7 Lys189 Ile22
5 Ser98 Trp119 Val92 Thr118 Lys35 Leu7 Phe129 Ile22
6 Ala89 Thr117 Ser57 Thr117 Ser44 Leu7 Glu230 Ile22
7 Gln93 Trp119 Asp58 Thr117 Lys61 Leu7 Glu203 Ile22
8 Asp58 Thr117 Phe34 Thr118 Ile68 Leu7 Ile180 Ile22
9 Ala37 Thr117 Leu20 Leu7 Phe187 Arg19
10 Lys103 Trp119 Ala17 Leu7 Cys199 Ile22

Figure 7: Top-scoring residue pair for the natural PDZ domain. The PDZ domain (orange) and the
ligand (green) in the biological assembly (dimer) of the PDB structure 2H2C are shown. The top-scoring
residue pair between Leu60 (red) on the domain and position -1 of the binding motif on the ligand (blue)
are in physical contact.
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top-scoring pairs are consecutive in the protein sequence, and two of them are close to Leu7 of the ligand.

In a previous study [63], the corresponding residue of Tyr72 on P53BP2, which is an unusual leucine, was

hypothesized to cause the protein to bind a peptide very different from its usual ligands. However,

mutating the leucine to tyrosine did not affect recognition specificity. As the corresponding residue of Ile73

on P53BP2 is also mutated from the class consensus, and the covariation scores for Asn71 and Ile73 are

also high, the three residues may have some combined effects in affecting recognition specificity.

It is also known that the residue corresponding to Glu31 in the RT loop of SH3 domains is a major

determinant of the identity of the P-3 residue of the ligand [64,65]. Since the P-3 residue does not exist in

the 1N5Z structure, it is not included in the correlation plots. However, when we checked the covariation

scores, indeed the ligand residue having the highest score with Glu31 is the P-3 residue. This observation

illustrates the potential of our method to identify SDRs when structural information is not available.

 
 

Figure 8: Top-scoring residue pair for the SH3 domain. The SH3 domain (orange) and the ligand
(green) in the PDB structure 1N5Z are shown. The top-scoring residue pair between Asn71 (red) on the
domain and Leu7 of the ligand (blue) is in close physical proximity. Also shown are the MSA residues in the
third (Ile73) and fourth (Tyr72) top-scoring pairs.

For protein kinases, the top-scoring pair between Tyr229 of the kinase domain in 1ATP and position +1 of

the binding motif in the bound peptide is not physically close. However, the next two pairs (between

Leu205 and position +1, and between Leu198 and position +1) are both close in proximity(Figure 9).

Both Leu198 and Leu205 were previously found to have hydrophobic interactions with position +1 of the

peptide [66,67]. They are two of the three residues (the third being Pro202, which has the highest

covariation score with position +1 as compared to other peptide positions) that form the binding pocket
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Figure 9: Top-scoring residue pair for the kinase domain. The kinase domain (orange) and the ligand
(green) in the PDB structure 1ATP are shown. The second top-scoring residue pair between Leu205 (red)
on the domain and position 1 of the binding motif on the ligand (blue), as well as the third top-scoring
residue pair between Leu198 (purple) and position 1 of the ligand motif, are in close proximity. The MSA
residue Tyr229 involved in the top-scoring pair is also shown (cyan).

for position +1 of the peptide, and contributes to the positioning of a significant portion (-3 to +1

positions) of the bound peptide [67].

We found that the pair between Tyr229 and position +1, besides being the top-scoring pair when

uncertainty coefficient was used as the covariation score, was also consistently one of the highest-scoring

pairs when covariation was measured by other normalized forms of mutual information. These consistent

results made us hypothesize that Tyr229 is also involved in determining binding specificity of the kinase

domain, and has long-range coupling with position +1 of the bound peptide. In a previous study, this

residue was predicted to be involved in linking nucleotide binding and peptide binding in protein

kinases [68]. Interestingly, in the study Tyr229 and Leu205 are predicted to belong to the same special

network (termed the θ-shaped network) of related residues. It thus might be the case that Tyr229 acts

through the residues in the network to affect the recognition of the +1 position of the peptide.

PDZ predictions are consistent with mutagenesis results

We further validated our predictions with the natural PDZ domains by using a mutagenesis dataset from a

domain specificity study [13] as described in the Materials and Methods section.

In our covariation calculation, among the 10 mutated sites, 4 were filtered as they were too conserved

(Ile36 [β2-1], Ile38 [β2-3], His88 [α2-1] and Val92 [α2-5]). Interestingly, in the mutagenesis study, indeed no

significant changes to the peptide PWM could be observed for Ile36 and Ile38. The high conservation of

them is thus probably caused by a structural or functional role that is independent of peptide binding.
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For the remaining 6 sites, we examined their maximum-scoring peptide residues. Four out of the 6 had

significant changes of the PWM at the predicted positions in the mutagenesis study (Table 3), including

the top-scoring pair among all predictions, between Leu60 and position -1. For the remaining two, changes

were also observed, albeit with lower statistical significance.

Table 3: Validation results of our PDZ predictions. The 6 sites validated in Tonikian et al. [13] that
were not filtered in our calculation are shown, along with their highest-scoring peptide PWM positions.
Significant changes of the predicted PWM positions after mutating the PDZ sites were reported for 4 cases,
while in the remaining 2 cases some changes were also observed.

PDZ site Structure-based Ligand Uncertainty Distance Specificity
in 2H2C nomenclature position coefficient (Å) change

[53]
Phe34 β1:β2-7 -3 0.16 15.0 Significant
Ala37 β2-2 -3 0.20 6.4 Significant
Ser39 β2-4 -1 0.16 9.5 Significant
Ser57 β3-4 -3 0.18 7.2 Observed
Asp58 β3-5 -3 0.21 9.1 Observed
Leu60 β3:α1-1 -1 0.24 7.0 Significant

The predicted pair between Phe34 and position -3 has a distance of 15.0Å in the PDB structure 2H2C. If

the SDRs of different class I PDZ domains are similar, this predicted pair is another example that suggests

our covariation method could potentially identify physically distant SDR pairs.

Covariation scores improve prediction of bound peptide profiles

As described in the Materials and Methods section, we compared three different methods for predicting the

profiles of bound peptides. The prediction results are shown in Figure 10.

In general, the prediction error is lower with a smaller fraction of PRDs left out for testing. This is

expected, as having more PRDs in the training set allows for more accurate computation of covariation

scores and the construction of more informative prediction models.

In all cases, the weighted average method using covariation scores outperformed regression tree and the

weighted average method using uniform scoring. This suggests that the covariation score provided a

meaningful way to weight useful features (i.e., PRD sites) for predicting residue distributions of the bound

peptides. Interestingly, while the regression tree method also performed feature weighting, in general it

performed worse than both weighted average methods. The low performance could be due to over-fitting,

as the regression trees are rich in expressive power while the numbers of PRDs in the datasets are small.

21



0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Left-out fraction

P
re

di
ct

io
n 

er
ro

r

Regression Tree
Weighted average (uniform)
Weighted average (covariation)

(a) Natural PDZ

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Left-out fraction

P
re

di
ct

io
n 

er
ro

r

(b) SH3

0.125

0.127

0.129

0.131

0.133

0.135

0.137

0.139

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Left-out fraction
P

re
di

ct
io

n 
er

ro
r

(c) Kinase

Figure 10: Results of predicting PWMs of bound peptides. Three methods for predicting PWMs of
bound peptides were compared using data from (a) natural PDZ domains, (b) SH3 domains and (c) kinase
domains.

Discussion

We present a novel way to use underutilized data. Our method is a valuable tool for exploring the

specificity space of PRDs. Moreover, as the amount of specificity data is increasing swiftly, also due to the

advent of next-generation sequencing and its applications to phage display [69], our method will prove even

more valuable to make optimal use of this kind of data.

We think our covariation approach can be used in conjunction with other methods to improve SDR

predictions. Since most current approaches are based on force fields and structural methods, our method

opens up a new perspective for improvement. As shown in the recent PRD specificity prediction challenge

of the DREAM4 competition [70], most likely a combination of structural and statistical methods will be

most successful at predicting specificities.

One limitation of our approach is that it does not consider possible relationships between different residue

pairs. As multiple PRD residues could simultaneously interact with a peptide residue and multiple peptide

residues could simultaneously interact with a PRD residue [71], binding specificity could be more

accurately modeled by considering covariation signals between residue groups. Furthermore, since a residue

could have an indirect covariation signal with another residue through an intermediate residue [42],
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performing residue group analysis could help filter out these non-SDR intermediates that have relatively

high covariation signals.

Another limitation of our approach is that it fails to identity SDRs that are highly conserved. Indeed we

have observed that in PDZ, some highly conserved residues (e.g. α2-1) are physically close to the peptide

and have been experimentally shown to affect binding specificity when mutated [13] (Figure 11). On the

other hand, some SDRs are not highly conserved, but exhibit strong covariation patterns with peptide

residues (e.g. β3:α1-1). Future approaches could improve upon our current method by combining

information about conservation with covariation to identity SDRs.
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Figure 11: Conservation and distance to the closest peptide residue of each PDZ domain site.
For each site on the domain, we computed the total sequence weight of the sequences having
a particular amino acid at the site. The conservation of the site is defined by the maximum
of such total weights normalized by the total sequence weight of all sequences in the MSA.

There are also PRD residues that determine binding but not binding specificity in that if they are

mutated, the resulting effect on binding cannot be restored by a second mutation. For instance, if a residue

is critical to the protein structure, mutating it could seriously affect the stability of the protein, which in

turn affects peptide binding. These residues are likely to be very conserved, and thus would not be ranked

high by our method.

A third limitation of our approach, and more generally of all covariation analysis methods based on a

multiple sequence alignment, is the dependency on the alignment quality. Different alignments could give

very different results, especially for alignments with many gaps. To cope with this issue, we have used a

published alignment for SH3, and made some manual corrections to the PDZ and kinase alignments

generated by computer programs. Future approaches should try to minimize the effect of alignment quality

on the analysis results.
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While we have attempted to predict peptide PWMs, it is also possible to predict interactions given a PRD

and a peptide. This problem has recently been studied using some large-scale datasets [9, 52]. It would be

interesting to study how the concept of covariation can be incorporated into these prediction methods.

Conclusions

We have presented a novel approach that utilizes an as of yet underused source of data. We have shown

that the covariation scores are consistent with previous findings from both a large-scale study, and other

individual experiments. In addition, we have identified a number of candidate SDRs in a ranked list for

future experimental validation. In particular, with the top-scoring pairs from natural PDZ domains and

kinase domains both verified in previous work, the SH3 top-scoring pairs are good candidates for testing

their roles in determining the binding specificity of SH3 domains.
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