On Mining Micro-array data by Order-Preserving Submatrix

Lin Cheung Kevin Y. Yip David W. Cheung Ben Kao Michael K. Ng
Department of Computer Science Department of Mathematics
University of Hong Kong University of Hong Kong
{Icheung, ylyip, dcheung, kad@cs.hku.hk mng@maths.hku.hk
Abstract

We study the problem of pattern-based subspace clustésimike traditional clustering methods that focus on graupi
objects with similar values on a set of dimensions, clustebly pattern similarity finds objects that exhibit a cohégaitern
of rises and falls in subspaces. Applications of patteradobsubspace clustering include DNA micro-array data asialy
automatic recommendation systems and target marketingrags Our goal is to devise pattern-based clustering method
that are capable of (1) discovering useful patterns of vasishapes, and (2) discovering all significant patterns. Weea
that previous solutions in pattern-based subspace cligjefo not satisfy both requirements. Our approach is torexthe
idea of Order-Preserving Submatrix (or OPSM). We deviseahalgorithm for mining OPSM, show that OPSM can be
generalized to cover most existing pattern-based clusgariodels, and propose a number of extension to the origiR&ID
model. Our extensive performance study on both syntheticsgds and real data sets shows that our Head-tail tree agogro

is effective. It reduces the number of clusters substdwntial

Keywords: Gene Expression, Data mining, Pattern-based clustering

1. Introduction

The invention of DNA micro-array technologies has revalntzed the experimental study of gene expression. Thogsand
of genes are probed every day. Gene expression data anadgsimes one of the hottest topics in data mining, artificial
intelligence, bioinformatics, and in the statistics conmitys Various data analysis techniques have been intelystadied.

Clustering has been one of the most popular methods of disitmvuseful biological insights from gene expression data

Many novel clustering techniques have been proposed. Algmothat has attracted much interest lately is the discovery

of clusters that are embedded in certain subspaces of lingbrdional data (such as gene expression data). The prablem
known as subspace clustering. In this paper we explore thitdgim of pattern-based clustering — a special type of sudespa
clustering that usesattern similarityas a measure of object distances.

In DNA micro-array data analysis, gene expression datagiarized as matrices. In such matrices\a carries the infor-
mation of ageneand acolumnrepresents aamplefor the experiment. The number in each cell recordsstiression value
of a particular gene under a particular sample. In this pajgense the termebjectanddimension(or attribute) to mean a
row (gene) and a column (sample) of a dataset, respectively.

The objective of data clustering is to group together datatpdhat arecloseor similar to each other in clusters. An im-
portant parameter to any clustering model is a distancdrfolasity) measure. Typical distance functions includeckdean
distance, Manhattan distance, and cosine distance. Hodingensional data, however, objects tend to exhibit sfimilar-
ity only over a (often unknown) subset of the attributes.sBung data over the global set of attributes often failexwact

any meaningful clusters. This problem shows up in micresadata analysis, which is typically high-dimensional.

X object 1
O object 2
Zv object 3

Figure 1. Raw data: 3 rows and 10 columns.

(a) Coherent pattern (b) Coherent upward pattern
70
60
50 -
40 1 X object 1 - object 1
O object 2 O object 2

04 "y |2oneas - abject
20 A
10 A X

0

b c f h i

Figure 2. The 3 rows exhibits a coherent pattern in subspace.

As an example, Figure 1 shows a set of 3 rows (lines) with 10roak (labeled ‘a’ to ‘f"). They-axis shows the expression

values. If we consider the values from all 10 columns, thezana patterns observed. However, if we select the set ofroadu

b, ¢, f, h, i and show only the expression values for those columns (sged-2(a)), we observe something interesting: the
expression values of the rows follow the same rise-andpfttiern over the selected columns. Technically, we canidens
the rows form a cluster in theubspace b, c, f, h, The example illustrates that traditional distance fuordiare sometimes
inadequate in capturing correlations among rows.

Another way to observe the pattern that is shared by the mwsrearrange the columns so that the expression values are
listed in an ascending order. Figure 2(b) shows the valuesline columns are rearranged according to the seqtiendes,
i, h. We can see that the expression values are all increasireg threlnew column sequence. We call the sequérgéd, i, h
anorder-preserving patterrniThelengthof an order-preserving pattern is the number of columns iy ibw is asupporting
row if its values exhibit an increasing order with respect todbleimn sequence; theipportof a pattern refers to the number
of supporting rows. In our example, the pattérn, b, i, hhas a length of 5 and a support of 3. An order-preserving patte
together with the set of supporting rows form @rder Preserving Sub-matrior OPSM for short. Note that in our OPSM
model, clusters may overlap. That is, rows could belong tttiple clusters. This model is reasonable for gene expoessi
analysis and function prediction, since the same set ofgjese have different functions under different samples.

In this paper our goal is to discuss the major challengeseofXRSM problem and to develop an efficient algorithm for
solving it. In addition, we propose some computationallglEnging variations of the OPSM problem. For those vanizi
we discuss potential solutions.

Subspace clustering is a computationally challenginglprabThe complexity lies in the requirement of simultandpus
determining both cluster members and relevant dimensitinibltes. Also, it is often difficult to determine the dinstonal-
ity of each cluster. The latter problem is particularly tfoegene-expression analysis due to the lack of domain kexdgé
and the large number of attributes.

The OPSM problem is a very challenging subspace clusterigjgm. First, the number of potential order-preserving pa
terns grows exponentially with respect to the number oitaites. A dataseb with » attributes ha """, n!/(n —i)! poten-
tial order-preserving patterns. For DNA micro-array datasthere could be tens or even hundreds of attributes. Exan
each OPSM as a potential cluster is clearly infeasible dffe pruning techniques are needed.

Another challenge to the OPSM problem is that the number t&g@l OPSM is huge. Recall that an OPSM consists of
a set of rows and a set of columns (arranged in a certain seguéfie note that any subset of those rows plus any subset of
those columns form a valid OPSM. These derived OPSMs, ollgstiecs, however, are redundant. In this paper we focus on
mining maximalOPSMs, that is, those that are not proper subclusters ofothe

The rest of the paper is structured as follows. In Section€2raview some related work. Section 3 gives a formal defini-
tion of the OPSM model. Section 4 discusses our OPSM alguoiithdetails. In Section 5, we propose some advanced prun-
ing methods for solving the OPSM problem. Section 6 disaissee interesting variations of the OPSM problem. A gener-

alization of the pattern-based clustering problem is dised in section 7. Section 8 shows the experiemental resudtae

concludes the paper in section 9.

2. Related works

In [2], Cheng and Church suggest modeling DNA microarraysit as a matrix, where each gene is represented as a
row and each sample is represented as a column. They intddhe bicluster concept as a measure of the coherence of
the genes and samples. A cluster is defined as a submatribgatsof the rows and a subset of the columns that are not
necessarily contiguous). L€ be the set of row and’ the set of columns. Lef ¢ O andJ C C be a subset of rows
and a subset of column, respectively. The paijr/) specifies a submatrid; . ; with a mean squared residue score defined
by H(I,J) = 1/(I1||J]) Xoier jes(dij — dig — drj + dry)?. The termd;; = 1/|J] >_jes dij represents the row mean,

drj = 1/[1| 3 ;¢ dij represents the column mean, ahg = 1/[1|[J| > d;; is the mean over the whole submatrix

iel,jed
Ajy. A submatrixA;; is called a-bicluster if H (I, J) < ¢ for somes > 0. A greedy algorithm is proposed to discover the
cluster with the lowest score. Yang et al. [13] proposed laeaigorithm that tries to find multiple clusters at the sdime.

Some variations of the biclustering model have also beepgz®d. The Plaid model proposed by Lazzeroni and Owen [8]
consider the overlapping of clusters, such that each eleinendata matrix is composed of the superposition of a global
background and the three factors of each cluster it pastiegpin. On the other hand, the spectral model proposed tgeKlu
et al. [7] assumes the data matrix is formed by disjoint lsitdts, where each element in a cluster is the product of tistetl
background level, the row effect and the column effect.

A different model pCluster was proposed by Wang et al. [12hok-contiguous submatrix is a cluster if for any pair of
rows:; andiz, and any pair of columng andy, in the cluster|(d;, ;, —d;, j,) — (di, j, —dis 5,)| < 6, whered, ,, represents
the value in rowr and columny. In other words, the value change across two attributes naistary a lot in different rows.

An algorithm for finding pClusters is proposed in the papeo improved algorithms MaPle [4] and SeqClus [11] have been
proposed afterwards.

While many different models have been proposed, most of thentuite restrictive. In order to identify more general
clusters, the OPSM model has been proposed by Ben-Dor &].aA hon-contiguous submatrix is an OPSM cluster if there
exists a permutation of the columns such that in the reguftiermuted matrix, the values in each row are monotonically
non-decreasing. This means for any two rawandi, and any two columng; andjs in the original submatrix, the signs of
di, 5, — di, j, andd;, ;, — d;, j, are the same. In other words, the model only requires the tolvave the same direction
of response across different columns, but the absolute muags of response are unimportant. In [3], a greedy algarit
was proposed to identify some number of good OPSMs from &eatiihe algorithm, however, does not guarantee that all
OPSMs are found, nor the best ones are found.

An extension of OPSM, namely OP-Cluster [9, 10] is proposgd.bLiu et al. Given a user-specified error threshold

0. Columns with their values differ withih are grouped into an equivalent class. The order of columtigman equiva-

lent class is ignored. They proposed a tree structure fonstall existing patterns and a depth-first search algorifitr min-
ing all error-tolerated clusters. However, the time anccepaomplexities of the algorithm increase exponentiallihvie
number of dimensions.

Our goal is to develop an algorithm that can efficiently idignall OPSMs in a dataset. We also propose a number of

variations to the cluster definition, which are of practicalues.

3. Problem Definition

In this section we give a formal description of the OPSM peofl Consider a gene-expression datdseatepresented as
a matrix. We us& andC to denote the set of rows and columnsinrespectively. We usé; ; to denote the entry ab in
row ¢ and columry.

A clusterS is a submatrix ofD formed by a subset ofs(> 2) rows and a subset ofis(> 2) columns ofD. Rows and
columns inS need not be contiguous in. The rows inS are referenced by their row indicesin each of which is a distinct
integer in{1,2,...,np}. The set of row indices of is denoted afs. Columns inS are similarly referenced. The set of
columns inS is denoted byC's. We uses; ; to denote an entry i$ with 4, j being the references w.r.t. the datasetFor
example s 3 refers to the entry irf' that is taken from the 2nd row and the 3rd columdfThe termrow indexrefers to
the location of a row inD rather than in the cluster concerned (suclyasThe same holds for the teroolumn index

The columns inS are enclosed in curly brackets, e.§s = {c1,¢2, ..., cms - A sequenceﬁs of the columns inS is
enclosed in angled brackets, e.@g =< ¢1,cC2,...,Cmg >. The columns in a sequence are totally ordered. For the basic
OPSM problem, a cluster is a set of rows and a set of columrsthat entries in every row are increasing w.r.t. a particula
column sequence. Hence, the order the columns is impoAatisterS is thus written ass = (Rg, ds).

A permutatiorof a sequence is a reordering of the columns inside the sequEar examples: x, y, z > is a permutation
of < z,z,y >. If the columns of a cluste§ is permuted to form another clustéy, both clusters have exactly the same

columns, but the order of their columns can be differenttheowordsCs = Cp butCg may not equaUp.

Definition 1 A clusterS is anOPSMif there exists a permutation of the columns such that in drenpited cluste, p; ; <
pij+1 foralli € {1,2,...,np} and allj € {1,2,...,mp — 1}. If a cluster satisfies the requirement without the need to

permute its columns, it is called am-sequence OPSM

A clusterS is asubclustenf a clusterS’ if Rs C Rs» andCs C Csr. A clusterS is aproper subclusteof a clusterS’ if

S is a subcluster of” and eithetRg # Rg: or Cs # Cs.
Definition 2 An OPSM is anaximal OPSMf it is not a proper subcluster of any OPSM.

An OPSMS = (Rg, Cs) is arow-maximal OPSMf there does not exist a clust8f = (Rg/, Cs) such thatRs C Rg:.

Column-maximal OPSK4 defined similarly.

Given a data matrixD, the basic OPSM problem is to find all in-sequence OPSM3.in
Note that for any pair of column indicgs andj., there are at most two maximal OPSMs of the f&fra- (Rs, < j1,j2 >

). One of them contains all rowswvhered; ;, < d; ;, and the other contains all rowswhered;: ;, > d;s ;,. The larger clus-

ter among the two has at Iea(s@] rows. As a result, for a datasét with np rows, every length-2 column sequence
must haven /2 supporting rows on average. This argument shows that slattérps are too numerous and uninterest-
ing. Also, some patterns (column sequences) may have omy &f supporting rows. These patterns are not very interest-
ing either since they are not statistically significant. Westmodify the basic OPSM problem so that only those OPSMs wit

a significant pattern length and a significant support arerted.

Problem Statement 1 (Maximal size-constrained OPSM problem): Given a data mral?, a supporting row threshold

Nmin, @nd a column thresholdh,,,;,,, find all maximal in-sequence OPSMsn D such thathg > n,:, andmg > man.

4. Algorithm for finding OPSMs

In this section, we first propose a new algorithm for explorédl maximal size-constrained in-sequence OPSMs. Sec-
ondly, we propose a novel data structure for fast patternsemgg¢ion. An illustrative example is shown at the end of Hais-

tion.

4.1. Algorithm

Our algorithm is similar to the Apriori algorithm for miningssociation rules [1]. In Apriori, it mines a transaction
databaseD’ and discovers alfrequentitemsets. First, it generates all itemsets with 2 items, aled them size-2 item-
sets. Then it scans thB’ and counts transactions contain the itemset, it is refemssipport An itemset is frequent if
it's support greater or equal to a user specified threshadalf integer k> 2, it generates size-k itemsets by concatenat-
ing two size-(k-1) itemsets with (k-2) items in common. lass D’ for counting the support for each itemset. It terminates

when there are no frequent size-(k+1) itemsets can be gedera
Property 1 (A priori property): A clusterS is an OPSM if and only if all proper subclusters®fare also OPSM.

Proof (=:) Suppose a clustef = (RS,OS) is an OPSM and a clusteP = (Rs,dp) is a corresponding in-
sequence OPSM formed by permuting the column$ oBy definition, p; ; < p; j+1, foralli € {1,2,...,ng} and all
j€{1,2,...,ms — 1}. The inequalities remain valid if some rows and columns &tetdd fromP. Therefore for any clus-
terS’ = (Rs/,Cs/) whereRg: C Rg andCys C Cg, an in-sequence OPSI’ can be formed by removing froiis all
row indices that are not i/, and fromCys. all column indices that are not ifis.. SinceS’ can be formed by permut-

ing the rows and columns @, S is an OPSM.

(«:) Suppose a clusted and all its proper subclusters are OPSMs. Consider a cl@sisrformed by removing the first
row of S. SinceS’ is an OPSM, there exist some integee X such thats; ; is the smallest element in roiof S, Vi
{2,3,...,ns}. For the sake of contradiction, suppose the smallest eleiméme removed row exists at colurmjh¢ X. This
meanss; j» < s1,5,Vj € X. Since the cluster formed by keeping only the first andittterows of.S is an OPSM for ali €
{2,3,...,ns}, 85,5 < si,5,Vj € X. But by the definition ofX, s; ; < s; ;.. Thisimpliess; ;; = s; ;, which is a contradiction
sincej’ ¢ X. Therefore, there must exist an integére X s.t.s; ;- is the smallest element in the first row, and thus all
rows of S. Consider a clustef’ formed by removing thg”-th column ofS. T' is an OPSM since it is a proper subcluster
of S. By adding the removed column back®g the resulting cluste§” must also be an OPSM since all rows of it have the
smallest element at the added column. Sifcan be formed by permuting the columns%f, S is an OPSM.

Our algorithm shares similar heuristic with Apriori algtwin, but with an additional constraint, the columns(thesaote

of items in Apriori) selected have an order.

Property 2 (Transitivity): If 1 = (Rs,,< 21, %2,..,Z:,Y1,Y2,-y; >) and So = (Rs,,< Y1, Y2,--,Yj121,22,- .2k >)
are two row-maximal in-sequence OPSMs aRd, (| Rs, containsn,,;, or more indices, thertS = (Rg, () Rs,,

< L1, L2, ooy Tiy Y1, Y2, ooy Yy 215 22, -0, 2 >) IS @ FOW-maximal in-sequence OPSM.

Proof: letS’ be the row-maximal in-sequence OPSM with: =< 21, 2o, ..., Tiy Y1, Y2, o Yy 21, 22, ., 2 >. [f @ TOW
indexisinRg, i.e., in bothRg, andRg,, it must also be imRs.. ThereforeS is an in-sequence OPSM. If a row indéis not
in Rg, then itis either notimg, or Rg,. In the former case, must not be inRs: because if itis inRgs/, then(Rgs, Ai,Cs,)
would be an OPSM as it is a proper subclustesgfwhich is a contradiction since it implies thét is not row-maximal.
The same argument holds for row indices that are nétdn. Therefore S is row-maximal.

According to the transitivity property, we can forghfrom S; and.S; without the need rescan the whole data matrix to
check for the row indices that are Rs.

Our algorithm takes a data sBtwith size|O| x |C|, a column thresholeh,,,;,,, and a supporting rows thresholg,;,,
as input. It finds all row-maximal in-sequence OPSMs with tetumns. For any pair of clustefs andS,, where the last
column index in(fs1 equals the first column index 'ﬁASQ. We create a new clustérwith Rg = Rg, [Rs, andCg equals
CAsl with the last column index irdfs2 appended to the end. We only ke8pf |Rs| > 2. After creating all row-maximal
in-sequence OPSMs with three columns, repeat the samedan@seto form row-maximal in-sequence OPSMs with four
columns, and so on, until no more clusters can be formed. Wizl clusters witht + 1 columns are created, the algorithm
performs a maximality test on each clustewith &£ columns against all clusters with+ 1 columns.S is maximal if there
exists no clustes’ with £ + 1 columns such thaks = R, andCs C Cg. All such S’ are added to the result set. Others
are discarded.

Completeness of the algorithm: For each row-maximal inieage OPSMS = (Rg, < c¢1,¢C2,...,Cng >), there must

exist a row-maximal in-sequence OPSH1 = (Rs, < ciycip1 >), WhereRs C Rg, foralli € {1,2,...,ng — 1}, due to

the apriori property. Therefore according to the algorittime clusterss! = (Rsy, < ciycit1, civ2 >) must be created for
alli € {1,2,...,ng — 2}, whereRg C Rgy. Iteratively, a clusteS* = (Rg+, < ¢1,Ca, ..., cng >) Must be created where
Rs C Rg~. SinceS is row-maximal,Rg- must equalkg, s0.5 must be identified by the algorithm.

Correctness of the algorithm: By the transitivity propeaticlusters being formed are row-maximal in-sequencel@®S
The ones being added to the result set are further proveddolbmn-maximal due to the maximality test and the fact that

all row-maximal in-sequence OPSMs with one more column aeogered.

4.2. Data Structure

In this sub-section, we propose a novel data structure teatapable efficient processing of (1) identifying all paifs
length4 column sequences where the last 1 indices of the first sequence equal the fitst 1 indices of the second
sequence, and (2) intersecting two sets of row indicesréfesred asHead-Tail Trees

We build a head tree and a tail tree in each iteration. Bothaftare balanced tree. Head tree and tail tree store akcdust
according to the firsk — 1 column indices and the last— 1 column indices respectively. Each tree node contains araolu
index as key. Child nodes are ordered according to the colodices lexicographically. Each setbf- 1 column indices is
represented by a path from the root to a leaf. It is referregdii sequencélwo sets share the firstnodes if their first:
indices are the same. Each leaf node in the head tree coptaimsrs to clusters whose firkt— 1 column indices equals to
the path sequence. Pointers to clusters are stored indaildaf node similarly. Each cluster stores its row indigea list of
row indices.

Suppose we get a set of maximal in-sequence OPSMs of sedeagte: 5. For each cluste$ = (Rs, < ¢1,¢ay ...y Cng >
), we insert the cluster along the pathcy, ca, ..., chs—1 > into the head tree and the pathco, cs, ..., ¢, > into the tail
tree. Add a pointer t& from both leaf nodes.

By traversing Head-Tail trees in pre-order, new clusteesgemerated at leaf nodes. If the current leaf node at head tre
has path sequence lexicographically smaller(larger) thatof the current node of the tail tree, we continue thetiaersal
of the head(tail) tree. If two path sequences are equal, y® fjloin each pair of clusters in the two lists linked by thetw
nodes to form new clusters.

Supposéd, is a cluster in the list linked by a head tree node, 8pds a cluster in the list linked by a tail tree node, where
S1 = (Rs,, < €2,...,cp41 >) @andSe = (Rs,, < c1, ¢, ..., i, >) respectively. We skip this pair ifi = c,41. Otherwise,
we intersect the 2 lists of row indices. If the resulting lisisn,,,;,, or more row indices, insek ¢y, ca, ..., cx11 > into the
head and tail trees for the+ 1 iteration, and add the pointer to the new cluster from batfhedes.

The intersection of 2 row indices is a time consuming openatror each cluster, a list of row indices are stored as a list
of integers. However, if the average number of rows per etustlarge as compared €|, it is more efficient to store the

row indices in bit vectors of lengtl’|. The merge joins are replaced by fast bitwise AND operations

xy: 2,4 yx:1,3,5 yw: 1,2,3,4,5 xz:1,2,3,4,5
xz:1,2,3,4,5 yz:1,2,3,4,5 zw:3,4,5 yz:1,2,3,4,5

Figure 3. The head tree[left] and tail tree[right] for clust ers with 2 columns.

Figure 4. The head tree[left] and tail tree[right] for clust ers with 3 columns.

We identify that the head tree built in the 1st iteration iffisient for forming new clusters. We can only check if the
head tree leaf node path sequence equals to the tail treedest of path sequence. We save insertion time by omitting the
insertions of new path sequences in the head tree. Since#tttiee is fixed, we can even store it in a simple list. Howaver
larger number of unnecessary join operations may be pegor@uppose a cluster with column sequesacec >. If both
trees are updated, a new cluster with column sequengld > will be generated only if there exists a cluster with column
sequences bed >. If we only update the tail tree, the join operations consaleigger set of clusters with path sequence

<ecd >.

4.3. Example

C R C R
wz 1,25 Xwz 25
XW 2,345 Xyw 2,4
Xy 2,4 Xyz 2,4

Xz 12345 XZw 345
yw 12345 ywz 125 -

yX 135 yXw 35
yz 12,345 yxz 135
w 3,45 yzw 3,45

awow~ls
N RN of<

S ENESR
» O w o ofx
AN oo olN

Table 1. Data Set D with Row-maximal in-sequence OPSMs.

The resulting trees are illustrated in Figure 3 to Figureigufe 5 shows the 2-columns head tree of the bit-vector im-
plementation. There are some special cases to note. Fiese is no clusters with's = wz since only row 1 supports it.
Second, there is no clusters wiffy = wy since no rows support it. Third,the value 5 appears twiceoim 5, so it ap-

pears in both clusters withs = wz andCg = zw.

wz:11001 xw:01111
xy:01010

xz:11111

yx:10101
yz:11111

Figure 5. The head tree for clusters with 2 columns using bit v ectors to store row indices.

H|zw34,5
T |wzi125
T |x2:1234.5
T 1yz:12345

yx:13,5
y2:1.2.34.5
xy:2,4

xw: 2345
yw:1.234,5
2w:345

xy2.4
x2:1,2.34.5
yx:13.5

===z
-z |z |z
|z |z |z

Figure 6. The physical tree that combines both head tree and t ail tree for clusters with 2 columns.

5. Pruning and Optimizations

In this section, we propose several efficient rules to prurgramising pattern using special properties of OPSM.

Optimization 1: For each pattern, we count the rows with goilsequence starting with the first column index of the
pattern, it is referred d#st count Similarly, last countis kept for last column index of the pattern.

Suppose a dataset has 4 columns, namely a, b, ¢, d, and tleerevi®) follows a pattern< badc >. It contributes 1 to
first count of each pattern start withand last count of each pattern end wittfSuppose a pattera ac > has support of 10
and a last count of 4, then the supporting rows of pattercx: > (wherex = b or d) is at most 6. In other words, it
is 7 or more, we can not have a cluster with patterace >. Similarly, suppose a pattera cd > has first count of 5, we
cannot have a pattern xcd > (Wherex = a or b) if threshold is 6 or more.

This optimization technique assumes there has no duphedtes in each row. A pre-processing step is needed to elimi-
nate all duplicate values in each row. It can be done by appgitkde column index to the end of each value.

Given patterrp, has support,, , first countf,, and last count, ; patternp, has support,_, first countf,,, and last count

l,,. A patternp,.,, is generated by extending with p,, with unknown suppors first countf,, ., and last court, . .

Prew?

According to the heuristic above, we kna, ., is at most ming,, - I, sp, - fp.), fp..., IS @t mostf, and at least

Prnew

- (sp, - fp,), andl,, . is at most, and at leask - (sp, - lp,). With the help of these formulas, we can skip support

Prew

counting of patterns with maximum support less than usentteg threshold. Moreover, we may use the upper bounds of

Fpnew andl to perform pruning in the next iteration.

Prew

Optimization 2:For example, the supporting rows<ofab > and the supporting rows ef ba > must sum up tdO|.

Similarly, if we have created node ab > and know it's support, we know it must equal the sum of sugpof abc >,

< acb > and< cab >. If we have the supports &f ab >, < abc > and< acb >, we can calculate the supportafcad >
eventually. In another view, support af cab > can also be inferred from support countsota >, < cba > and< bca >.

In all these cases, we can infer the support of some pattertitsoke of others. We only need one of these combinations to
get the support ok cab >. It is good to have multiple ways because some supports mialyenavailable. For example, if

< abe > is infrequent, we do not have its support. Then, we cannotheseombination ok ab >, < abc > and< acb >

for the inference. However, a longer pattern requires stpjpd more patterns to perform a single pruning.

6. Variations of OPSM

In this section, we propose several possible biologicadjgificant variations of OPSM. They are Sign-constrainezbpr
lem, Sign-constrained Bidirectional problem, and Eraletated problem. To ease understanding, we provide exanl
illustrate clustering results using the following data mab’ for different variation problems. We also propose simpléime

ods for solving the problems.

a b [d

o1 | 10.3| 21.8| 29.8| 2.3
o2 | 3.8 |421|59.2| 35
o3 | 104 | 13.8| 159 | -25
o4 | 51.1| 58.2| 59.9 | 68.1
o5 | 563.9| 41.8| 39.8 | 18.3
o¢ | 0.3 | 218|209 23

Table 2. Data matrix D’.

6.1. Sign-constrained problem

In DNA micro-array, each entry; ;, representing the expression level of gene i in sample giiveld by comparing the
expression level of gene i, the gene of interest, and exprels/el of a reference gene. A positive value means the giene
over-expressed at sample j. A negative value implies the gisrunder-expressed at sample j. Their biological meanamg
totally different.

Suppose a geng, and a geng, exhibit the same rise and fall patterns on a set of samleg, is over-expressed af’
andg, is under-expressed on a subset®f We can not groupg,, andg, into the same cluster. Motivated by this, We come

up with the Sign-constrained problem.

Variation Problem 1 (Sign-constrained problem): Given a data matiX find all in-sequence OPSMsin D such that for

all j € {1,2,...,mg}, sign(s1,;) = sign(sa ;) = ... = sign(sn, ;), Wheresign() is the sign function defined as follows:

1 ifx>0
sign(z) = (1)
0 ifz<0
Example: Considering only rowf®, 02, 03, 04 } data matrixD’, there exists a sign-constrained cluster= ({01, 02, 03,04}, <
abc >). Note that,51 = ({01, 02, 03}, < dabc >) is a maximal size-constrained cluster, but not a sign-caimsd cluster.
The sign consistent constraint verification can be optichlzg using a bitmap. Create a bitmap B of size m, where

B, ; stores the sign of expression level of gene i in sample . Téédivation can be replaced by fast bitwise NOT XOR

operations.

6.2. Sign-constrained Bidirectional problem

Given a sign-constrained maximal OPSM, we know all genesimvthis cluster with rows(genes). exhibit a sequence
Cs. Itis biological interesting to know if there exists any gef); have the reverse sequencaif as the activities of genes
O4 suppresses the activity of gen@gs, and vice versa. According to this argument, two genes hawerse expression se-

guences are highly related.

Variation Problem 2 (Sign-constrained Bidirectional problem): Given a datatriaD, find all in-sequence sign-constrained
bi-directional OPSMs inD.

A clusterS is a sign-constrained bi-directional OPSM if (1) it is a sigonstrained maximal OPSM, and (2) it can be
divided into of 2 subcluster®,,, and Py, where P, contains all rowsi € {1,2,....,np,}, pi; < pij+1 forall j

{1, 2, ey MP,

up

— 1}. Pyown contains allrows: € {1,2,...,np, .} pij > pij+1 forall j € {1,2,...,mp,, . —1}.np,,

andnp, . sumuptop.

Example: Considerind’, n,;, = 1, andm,,;, = 3, one of the sign-constrained bi-directional OPSMsSis =
({01, 02, 03,04, 05}, < abc >). (Note: ({01, 02, 03,04}, < abc >) is a sign-constrained maximal OPSM.)

Given we discovered all sign-constrained maximal OPSMsabasktD by the Head-tail tree approach, we can reuse the
tail tree to see if we can find any genes exhibit a reverse segue

Example: Suppose a pattern P is a sign-constrained maxiP@MOwith pattern< abed >. We can traverse the tail tree

by the path< cba > to check if there exist any row follows expression patterdcba >.

6.3. Error-tolerated problem

In [5], authors claimed that the measurements of expressilues in DNA microarrays may have errors. It initiates our

proposal of a robust error-tolerated OPSM model.

Variation Problem 3 (Error-tolerated problem): Given a data matri® and an error threshold, find all in-sequence-
tolerated OPSMs irD.
A clusterS is a e-tolerated OPSM if there exists a permutation of the colusuch that in the permuted clustét,

pij+1 —Dij > —€ foralli e {1,2,...,np}andallj € {1,2,...,mp — 1}.

Example: Considerind’ ande be 2, there exists an error-tolerated clust&rs= (o1, 02, 03, 04, 05, 06, < abc >). S
cannot be discovered in orginial OPSM.

We propose a post-processing solution for the Error-ttderaroblem. We first generate all size-constrained maximal
OPSMs. The input space is smaller here, as it only includesmz OPSMs fullfilled the threshold requirements. An esfror
tolerated cluster,,.,, with pattern of length k+1 is generated only if there existslsters with pattern of length k, and
these two patterns(sequence) differ at one position onbyrelaver,c, .., should have at least,,;,, rows support (see Ta-

ble 4).

1. LetS be the set of all maximal OPSMs in dafa
2. LetmaxLength be the length of the longest pattern exists$in
3. For k =mu.» to maxLength do
4, For eacle; € S with pattern of length k
5. Letp., be the pattern of;, pc, = < Di,, Pios -vs Dij, >
6. Find the set of maximal OPSMs;, , where each cluster; belongs taSk,, c;'s patternp.,
= < Pj1»Dias - Pi > Pe; @Ndpe; are the same in k-1 positions, and position g is the only jaosit
2 patterns differ
7. pi, =p;Vt€1,2,...,9—1,9+1,...k
8. for eache; € Sy,
9. R=Rc, N R;;
10. p1 :<p’i17pi27"'7pig7pjg7p’ik >
11. p2:<p’i17pi27"'7pjg7pig7pik >
12. Ry and Rz be 2 empty set of rows.
13. for each row, € R
14. if (dv,p;, — dv,pi, = —€)
15. R1 =R1Ury;
16. if (dv,pig — dv’p].g > —e)
17. R2 = Ra Ury;
19. Crnew; = R1,p1 0r
20. iNsertcpew, INt0.S;
22. Cnewsy = R2, P2
23. iNsertcpew, INt0.S;

Table 3. Algorithm for finding Error-tolerated clusters.

7. Generalization

As we mentioned earlier, there are many diverse models tbenpabased clustering. In different applications anddiér

ferent users, different types of patterns may be needednmBasurement of quality of patterns and clusters also diffedif-

ferent models. For example, both the pClustering modellaa®P SM model are quite differentin technical details, bayt
share similar philosophy. However, such a one method péati@r approach may not be effective. In this section, wesgen
alize OPSM model and propose a new generic clustering mdaehvincludes most previously proposed pattern-based clus

tering models(e.g. Biclustering model, pCluster modelS®Pmodel). Moreover, we prove some properties in the generic

model.

Definition 3 A matrixS = (Rg, (55) is a Pattern-based Clustérand only if it satisfies the following inequalities:
Vi1,i2 € {1, 2, .., ns},le,jQ € {1, 2, ..., ms}, s.t.g1 < Ja,

a < (f(Sir,42) = f(Sir,51)) = (9(Sizia) — 9(Siz,in)) < B

By setting specific constraints, the generic model can fitipusly proposed specific definitions (refer Table 4).

f) 1 gx) || B

Perfectd-cluster X X 0 0

pCluster, shifting| x X -)

pCluster, scaling| logx | logx | -§)
OPSM X 0 0| +o0

Table 4. Constriants for Specific Clustering Model.

7.1. Anti-monotonicity

Suppose a matrix has some rows and columns do not satisfiyebaality, then they remain to violate the inequality when
new rows or columns are added to the matrix. This means aflittsters defined above intrinsically have the anti-moniaton
property: a matrix cannot be a cluster if any of its propemsatrixes is not a cluster. Notice that here we involve botisro
and columns in the definition of the anti-monotonic propefifg can even observe a stronger property: a matrix is a cluste
(according to any of the above definitions) if and only if &lproper submatrices are clusters. The reason is quitaltiéwn
inequality that holds in the matri¥ must also hold in some of its submatrices, while an inequ#dat holds in a submatrix
must also hold in matri§.

An imperfectd-cluster is not anti-monotonic because it does not enfdreetnstraints locally for any pairs of rows and

columns, but only requires the whole cluster globally prekian aggregate score lower than a certain threshold.

7.2. Transitivity

As defined above, the transitivity property holds if for amptclustersS; = (Rs,< 1, 2, ..., i, Y1, Y2, ..., y; >) and
Sg = (R5,< Y1y Y25 oy Yjs Z1y 22y ooy Bk >), 53 = (R5,< L1y T2y ooy Ty Y1y Y2u oo Yy 15 22y ooy 2k >) must also be a cluster.
We can start with the following simpler form: for any two dess.S; = (Rs, < z,y >) andSs = (Rs, < y,z >),

S3 = (Rs, < z,y,z >) must also be a cluster. Now,

o < (f(Sirg2) = f(Sir51)) = (9(Sing2) — 9(Sizi1)) < B @

o < (f(Sirgs) = f(Sir,52)) = (9(Siz,55) — 9(Siz,52)) < B ®3)
(2)+3):

200 < (f(Sir,gs) = F(Sin 1)) = (9(Sia,55) — 9(Sia,51)) <28 4

This means the simpler form holds if bothand 5 are either 0 or unbounded-¢tc). Perfects-cluster, and our OPSM
cluster definitions all fall into this category. The compfexm can then be proved by arbitrarily picking asj., and try

eachz, (1 <4’ <i)asj; and eachy (1 < k' < k) asjs.

8. Experiments

We implement the Head-Tail Trees algorithm in JAVA and teshia PC with a P4 2.26 GHz CPU and 512 MB main mem-
ory. We evaluated the effectiveness and efficiency of therélgn on solving theMaximal size-constrained OSPM problem
(Problem Statement 1) in synthetic and real life data setsvever, there is not any previous algorithm which is solhémng
actly the same problem, we cannot make any quantitative adegm. Therefore, we compare our Head-Tail Trees algarith
with the Apriori OPSM generation without Head-Tail Treedadstructure. First, we describe the datasets employed. Sec

ondly, we report the founding in the real data set. At lastewaduate the performance of Head-Tail Trees.

8.1. Data Sets

[Synthetic Data] We generate synthetic datasets in talbotar. Initially, the table is filled with random values rangi
from O to 600, and then we embed a fixed number of OPSMs in thelasav

[Gene Expression Data] Gene expression data are beingageddyy DNA chips and other microarray techniques. The
yeast microarray contains expression levels of 2,884 gemesr 17 conditions (time points) [6]. The data set is presskas
a matrix. Each row corresponds to a gene and each columrsegqisea condition under which the gene is developed. Each

entry represents the relative abundance of the mRNA of ageder a specific condition. The entry value, derived by sgali

9000

8000
7000

6000

T

3’ 5000 OPSM

5 o~

£ 4000 A\ ||=—Head-Tail Trees

3000

2000

1000

10 11 12 13 14 15 16 17 18 19 20
Number of columns

Figure 7. Scalability with respect to number of columns.

8000

7000
6000

5000

[—O-Head-Tail Trees

Time (sec)
N
8
g
s

3000

2000

1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of rows

Figure 8. Scalability with respect to number of rows.

and logarithm from the original relative abundance, is mflinge of 0 and 600. Biologists are interested in the findifigs

subset of genes showing strikingly similar up-regulatind down-regulation under a subset of conditions [2].

8.2. Results from Real Data

We set the thresholds,,;,, = 2 andm.,.;, = 2. In table 8.2, we report the clusters found in the yeast maicey dataset
with OPSM, which match with the founding of Biclustering offitession Data [2]. It shows that all genes within one func-
tional group shared some coherence patterns at certaiptimes. To name a few, function group [G2: chromosome, raicle
segregation], the 2 member genes can form 48 length-12-prdserving patterns, it implies the members share a sineila
action pattern on 48 sets of size-12 time points. FunctiongfLate G1: DNA replication], the 14 member genes can form 3
length-5 order-preserving patterns, it implies the 14 memntbgether share a similar pattern on 3 sets of size-5 tirimpn-
terestingly, we discovered that genes with unknown fumcgmups could not form long order-preserving patterns,aym
imply the genes within one unknown function group might hadifferent functions. The real data set result indicategéhe

lax OPSM similarity model provides extra insight in undarsting the data.

Functional Group number of genes OPSM with MAX length | Number of OPSMs discoveref
Early G1: cell cycle regulators 3 6 451
Early G1: DNA replication 6 5 153
Early G1: transcription factor, unknown phenotype 2 8 670
Early G1: mating pathway 3 7 1174
Early G1: glycolysis, respiration 9 3 57
Early G1: biosynthesis 2 9 3242
Early G1: miscellaneous 4 4 39
Early G1: unknown function 27 2 14
Late G1: cell cycle regulators 7 5 216
Late G1: chromosome, nuclear segregation 9 5 338
Late G1: budding, directional growth 7 5 119
Late G1: DNA replication 14 5 187
Late G1: DNA repair and recombination 11 4 152
Late G1: transcription, unknown/complex phenotype 3 7 657
Late G1: mating pathway 5 4 37
Late G1: biosynthesis 3 6 534
Late G1: miscellaneous 10 4 65
Late G1: unknown function 52 2 9
S: chromosome, nuclear segregation 12 4 92
S: DNA replication 4 4 129
S: transcription, unknown or complex phenotype 7 4 54
S: biosynthesis 6 4 70
S: miscellaneous 4 5 120
S: unknown function 28 2 10
G2: chromosome, nuclear segregation 2 12 25702
G2: budding, directional growth 4 5 161
G2: biosynthesis 3 9 1493
G2: miscellaneous 7 4 78
G2: unknown function 23 3 25
M: cell cycle regulators 4 8 802
M: chromosome, nuclear segregation 6 6 650
M: budding, directional growth 2 12 14670
M: transcription, unknown/complex phenotype 5 6 300
M: biosynthesis 2 10 4206
M: miscellaneous 3 6 389
M: unknown function 23 3 50
Multiple: cell cycle regulators 2 10 2970
Multiple: DNA replication 2 9 3902
Multiple: glycolysis, respiration 2 10 5112
Multiple: unknown function 19 2 0

Table 5. Data matrix D’.

8.3. Performance Analysis

We evaluate the performance of the Head-Tail Trees algorith we increase the number of objects and the number of di-
mensions in the synthetic data sets. The Head-Tail Treesitm is compared with the pure Apriori OPSM clusters gener
ation without Head-Tail Trees. As we know, the number of ptiéd order-preserving patterns grows exponentially with
spect to the number of columns, where the number of rowstafthe set intersection operations. For experiments inrBigu

8, the number of columns is 10,,,;, is 10 andm,,;, iS 2. We can observe that the Head-Tail Trees algorithm sdizle

early to the increasing number of rows. Data sets used inr&igare synthetic data with the number of rows fixed at 1000,
Nmin 1S 10 andm,,;,, is 2. We can observe that the execution time of pure Apriorfs®@Ryrows exponentially as the num-

ber of columns increases. The Head-Tail Trees algorithmpertdrms the OPSM significantly and the advantage becomes
more substantial with larger data set. When the number ofieo$ more than 15, the pure OPSM takes a very long execu-

tion time, but the Head-Tail Trees algorithm can still respowithin a reasonable time.

9. Conclusions

Clustering by pattern similarity is an interesting and &vading problem. In many applications including DNA array
analysis, rows manifest consistent patterns on a subselwihas even they are not close in terms of distance. These pat
terns are not captured by traditional(subspace) clugtetigorithms. And most previously proposed solutions atecapa-
ble to report all pattern-based clusters. In this paper,nedyaed the OPSM model, which aimed at capturing the cardist
tendency by a subset of rows in a subset of dimensions in Higkriional space. We proposed a Head-Tail Trees struc-
ture and an Apriori-like algorithm that can discover all QS We also discussed some advanced pruning methods on the

OPSM model, some variations of the OPSM problem, and a gkregiran model of pattern-based clustering.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for miningasation rules in large databasa4.DB, 1994.

[2] Y. Cheng and G. M. Church. Biclustering of expressioradésMB, 2000.

[3] A.B.-D. et. al. Discovering local structure in gene eagsion data: the order-preserving submatrix problRBCOMB 2002.
[4] J.P. et. al. MaPle: A fast algorithm for maximal pattdrased clustering CDM, 2003.

[5] J. P.B. et. al. Significance and statistical errors inghelysis of dna microarray datBNAS 2002.

[6] S.T. etal. Yeast micro data sétttp://arep.med.harvard.edu/biclustering/yeast.rxat2000.

[7] Y. K. et. al. Spectral biclustering of microarray candata: Co-clustering genes and conditio@&nome Researcth3(4):703-716,

2003.
[8] L. Lazzeroni and A. Owen. Plaid models for gene exprassiata. Statistica Sinical2:61-86, 2002.
[9] J. Liuand W. Wang. Op-cluster: Clustering by tendenchigh dimensional spacéCDM, 2003.
[10] J. Liu, J. Yang, and W. Wang. Biclustering in gene expi@s data by tendenc{SB 2004.
[11] H. Wang, F. Chu, W. Fan, P. Yu, and J. Pei. A fast algorifonsubspace clustering by pattern similari88DBM 2004.
[12] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering bygatsimilarity in large data setSIGMOD, 2002.

[13] J. Yang, H. Wang, W. Wang, and P. Yu. Enhanced biclusgeon expression dat&IBE, 2003.

