
On Mining Micro-array data by Order-Preserving Submatrix

Lin Cheung Kevin Y. Yip David W. Cheung Ben Kao

Department of Computer Science

University of Hong Kong

{lcheung, ylyip, dcheung, kao}@cs.hku.hk

Michael K. Ng

Department of Mathematics

University of Hong Kong

mng@maths.hku.hk

Abstract

We study the problem of pattern-based subspace clustering.Unlike traditional clustering methods that focus on grouping

objects with similar values on a set of dimensions, clustering by pattern similarity finds objects that exhibit a coherent pattern

of rises and falls in subspaces. Applications of pattern-based subspace clustering include DNA micro-array data analysis,

automatic recommendation systems and target marketing systems. Our goal is to devise pattern-based clustering methods

that are capable of (1) discovering useful patterns of various shapes, and (2) discovering all significant patterns. We argue

that previous solutions in pattern-based subspace clustering do not satisfy both requirements. Our approach is to extend the

idea of Order-Preserving Submatrix (or OPSM). We devise a novel algorithm for mining OPSM, show that OPSM can be

generalized to cover most existing pattern-based clustering models, and propose a number of extension to the original OPSM

model. Our extensive performance study on both synthetic data sets and real data sets shows that our Head-tail tree approach

is effective. It reduces the number of clusters substantially.

Keywords: Gene Expression, Data mining, Pattern-based clustering

1. Introduction

The invention of DNA micro-array technologies has revolutionized the experimental study of gene expression. Thousands

of genes are probed every day. Gene expression data analysisbecomes one of the hottest topics in data mining, artificial

intelligence, bioinformatics, and in the statistics community. Various data analysis techniques have been intensively studied.

Clustering has been one of the most popular methods of discovering useful biological insights from gene expression data.

Many novel clustering techniques have been proposed. A problem that has attracted much interest lately is the discovery

of clusters that are embedded in certain subspaces of high-dimensional data (such as gene expression data). The problemis

known as subspace clustering. In this paper we explore the problem of pattern-based clustering — a special type of subspace

clustering that usespattern similarityas a measure of object distances.

In DNA micro-array data analysis, gene expression data is organized as matrices. In such matrices, arow carries the infor-

mation of ageneand acolumnrepresents asamplefor the experiment. The number in each cell records theexpression value

of a particular gene under a particular sample. In this paperwe use the termsobjectanddimension(or attribute) to mean a

row (gene) and a column (sample) of a dataset, respectively.

The objective of data clustering is to group together data points that arecloseor similar to each other in clusters. An im-

portant parameter to any clustering model is a distance (or similarity) measure. Typical distance functions include Euclidean

distance, Manhattan distance, and cosine distance. For high-dimensional data, however, objects tend to exhibit strong similar-

ity only over a (often unknown) subset of the attributes. Clustering data over the global set of attributes often fails toextract

any meaningful clusters. This problem shows up in micro-array data analysis, which is typically high-dimensional.

0

10

20

30

40

50

60

70

80

90

a b c d e f g h i j

object 1

object 2

object 3

Figure 1. Raw data: 3 rows and 10 columns.

(a) Coherent pattern

0

10

20

30

40

50

60

70

b c f h i

object 1

object 2

object 3

(b) Coherent upward pattern

0

10

20

30

40

50

60

70

f c b i h

object 1

object 2

object 3

Figure 2. The 3 rows exhibits a coherent pattern in subspace.

As an example, Figure 1 shows a set of 3 rows (lines) with 10 columns (labeled ‘a’ to ‘f’). They-axis shows the expression

values. If we consider the values from all 10 columns, there are no patterns observed. However, if we select the set of columns

b, c, f , h, i and show only the expression values for those columns (see Figure 2(a)), we observe something interesting: the

expression values of the rows follow the same rise-and-fallpattern over the selected columns. Technically, we can consider

the rows form a cluster in thesubspace b, c, f, h, i. The example illustrates that traditional distance functions are sometimes

inadequate in capturing correlations among rows.

Another way to observe the pattern that is shared by the rows is to rearrange the columns so that the expression values are

listed in an ascending order. Figure 2(b) shows the values when the columns are rearranged according to the sequencef, c, b,

i, h. We can see that the expression values are all increasing under the new column sequence. We call the sequencef, c, b, i, h

anorder-preserving pattern. Thelengthof an order-preserving pattern is the number of columns in it; A row is asupporting

row if its values exhibit an increasing order with respect to thecolumn sequence; thesupportof a pattern refers to the number

of supporting rows. In our example, the patternf, c, b, i, hhas a length of 5 and a support of 3. An order-preserving pattern

together with the set of supporting rows form anOrder Preserving Sub-matrix, or OPSM for short. Note that in our OPSM

model, clusters may overlap. That is, rows could belong to multiple clusters. This model is reasonable for gene expression

analysis and function prediction, since the same set of genes can have different functions under different samples.

In this paper our goal is to discuss the major challenges of the OPSM problem and to develop an efficient algorithm for

solving it. In addition, we propose some computationally challenging variations of the OPSM problem. For those variations,

we discuss potential solutions.

Subspace clustering is a computationally challenging problem. The complexity lies in the requirement of simultaneously

determining both cluster members and relevant dimensions/attributes. Also, it is often difficult to determine the dimensional-

ity of each cluster. The latter problem is particularly truefor gene-expression analysis due to the lack of domain knowledge

and the large number of attributes.

The OPSM problem is a very challenging subspace clustering problem. First, the number of potential order-preserving pat-

terns grows exponentially with respect to the number of attributes. A datasetD with n attributes has
∑n

i=2
n!/(n− i)! poten-

tial order-preserving patterns. For DNA micro-array datasets, there could be tens or even hundreds of attributes. Examining

each OPSM as a potential cluster is clearly infeasible. Effective pruning techniques are needed.

Another challenge to the OPSM problem is that the number of potential OPSM is huge. Recall that an OPSM consists of

a set of rows and a set of columns (arranged in a certain sequence). We note that any subset of those rows plus any subset of

those columns form a valid OPSM. These derived OPSMs, or subclusters, however, are redundant. In this paper we focus on

miningmaximalOPSMs, that is, those that are not proper subclusters of others.

The rest of the paper is structured as follows. In Section 2, we review some related work. Section 3 gives a formal defini-

tion of the OPSM model. Section 4 discusses our OPSM algorithm in details. In Section 5, we propose some advanced prun-

ing methods for solving the OPSM problem. Section 6 discusses some interesting variations of the OPSM problem. A gener-

alization of the pattern-based clustering problem is discussed in section 7. Section 8 shows the experiemental resultsand we

concludes the paper in section 9.

2. Related works

In [2], Cheng and Church suggest modeling DNA microarray dataset as a matrix, where each gene is represented as a

row and each sample is represented as a column. They introduced the bicluster concept as a measure of the coherence of

the genes and samples. A cluster is defined as a submatrix (a subset of the rows and a subset of the columns that are not

necessarily contiguous). LetO be the set of row andC the set of columns. LetI ⊂ O andJ ⊂ C be a subset of rows

and a subset of column, respectively. The pair (I, J) specifies a submatrixAI×J with a mean squared residue score defined

by H(I, J) = 1/(|I||J |)
∑

i∈I,j∈J (dij − diJ − dIj + dIJ)2. The termdiJ = 1/|J |
∑

j∈J dij represents the row mean,

dIj = 1/|I|
∑

i∈I dij represents the column mean, anddIJ = 1/|I||J |
∑

i∈I,j∈J dij is the mean over the whole submatrix

AIJ . A submatrixAIJ is called aδ-bicluster ifH(I, J) ≤ δ for someδ > 0. A greedy algorithm is proposed to discover the

cluster with the lowest score. Yang et al. [13] proposed another algorithm that tries to find multiple clusters at the sametime.

Some variations of the biclustering model have also been proposed. The Plaid model proposed by Lazzeroni and Owen [8]

consider the overlapping of clusters, such that each element in a data matrix is composed of the superposition of a global

background and the three factors of each cluster it participates in. On the other hand, the spectral model proposed by Kluger

et al. [7] assumes the data matrix is formed by disjoint biclusters, where each element in a cluster is the product of the cluster

background level, the row effect and the column effect.

A different model pCluster was proposed by Wang et al. [12]. Anon-contiguous submatrix is a cluster if for any pair of

rowsi1 andi2, and any pair of columnsj1 andj2 in the cluster,|(di1,j1−di1,j2)−(di2,j1−di2,j2)| ≤ δ, wheredx,y represents

the value in rowx and columny. In other words, the value change across two attributes mustnot vary a lot in different rows.

An algorithm for finding pClusters is proposed in the paper. Two improved algorithms MaPle [4] and SeqClus [11] have been

proposed afterwards.

While many different models have been proposed, most of themare quite restrictive. In order to identify more general

clusters, the OPSM model has been proposed by Ben-Dor et al. [3]. A non-contiguous submatrix is an OPSM cluster if there

exists a permutation of the columns such that in the resulting permuted matrix, the values in each row are monotonically

non-decreasing. This means for any two rowsi1 andi2 and any two columnsj1 andj2 in the original submatrix, the signs of

di1,j1 − di1,j2 anddi2,j1 − di2,j2 are the same. In other words, the model only requires the rowsto have the same direction

of response across different columns, but the absolute magnitudes of response are unimportant. In [3], a greedy algorithm

was proposed to identify some number of good OPSMs from a dataset. The algorithm, however, does not guarantee that all

OPSMs are found, nor the best ones are found.

An extension of OPSM, namely OP-Cluster [9, 10] is proposed by J. Liu et al. Given a user-specified error threshold

δ. Columns with their values differ withinδ are grouped into an equivalent class. The order of columns within an equiva-

lent class is ignored. They proposed a tree structure for storing all existing patterns and a depth-first search algorithm for min-

ing all error-tolerated clusters. However, the time and space complexities of the algorithm increase exponentially with the

number of dimensions.

Our goal is to develop an algorithm that can efficiently identify all OPSMs in a dataset. We also propose a number of

variations to the cluster definition, which are of practicalvalues.

3. Problem Definition

In this section we give a formal description of the OPSM problem. Consider a gene-expression datasetD, represented as

a matrix. We useO andC to denote the set of rows and columns inD, respectively. We usedi,j to denote the entry ofD in

row i and columnj.

A clusterS is a submatrix ofD formed by a subset ofnS(≥ 2) rows and a subset ofmS(≥ 2) columns ofD. Rows and

columns inS need not be contiguous inD. The rows inS are referenced by their row indices inD, each of which is a distinct

integer in{1, 2, ..., nD}. The set of row indices ofS is denoted asRS . Columns inS are similarly referenced. The set of

columns inS is denoted byCS . We usesi,j to denote an entry inS with i, j being the references w.r.t. the datasetD. For

example,s2,3 refers to the entry inS that is taken from the 2nd row and the 3rd column ofD. The termrow indexrefers to

the location of a row inD rather than in the cluster concerned (such asS). The same holds for the termcolumn index.

The columns inS are enclosed in curly brackets, e.g.,CS = {c1, c2, ..., cmS
}. A sequenceĈS of the columns inS is

enclosed in angled brackets, e.g.,ĈS =< c1, c2, ..., cmS
>. The columns in a sequence are totally ordered. For the basic

OPSM problem, a cluster is a set of rows and a set of columns such that entries in every row are increasing w.r.t. a particular

column sequence. Hence, the order the columns is important.A clusterS is thus written asS = (RS , ĈS).

A permutationof a sequence is a reordering of the columns inside the sequence. For example,< x, y, z > is a permutation

of < z, x, y >. If the columns of a clusterS is permuted to form another clusterP , both clusters have exactly the same

columns, but the order of their columns can be different. In other words,CS = CP but ĈS may not equalĈP .

Definition 1 A clusterS is anOPSMif there exists a permutation of the columns such that in the permuted clusterP , pi,j ≤

pi,j+1 for all i ∈ {1, 2, ..., nP} and all j ∈ {1, 2, ..., mP − 1}. If a cluster satisfies the requirement without the need to

permute its columns, it is called anin-sequence OPSM.

A clusterS is asubclusterof a clusterS′ if RS ⊆ RS′ andCS ⊆ CS′ . A clusterS is aproper subclusterof a clusterS′ if

S is a subcluster ofS′ and eitherRS 6= RS′ or CS 6= CS′ .

Definition 2 An OPSM is amaximal OPSMif it is not a proper subcluster of any OPSM.

An OPSMS = (RS , CS) is arow-maximal OPSMif there does not exist a clusterS′ = (RS′ , CS) such thatRS ⊂ RS′ .

Column-maximal OPSMis defined similarly.

Given a data matrixD, the basic OPSM problem is to find all in-sequence OPSMs inD.

Note that for any pair of column indicesj1 andj2, there are at most two maximal OPSMs of the formS = (RS , < j1, j2 >

). One of them contains all rowsi wheredi,j1 ≤ di,j2 and the other contains all rowsi′ wheredi′,j1 ≥ di′,j2 . The larger clus-

ter among the two has at least⌈ |O|
2
⌉ rows. As a result, for a datasetD with nD rows, every length-2 column sequence

must havenD/2 supporting rows on average. This argument shows that short patterns are too numerous and uninterest-

ing. Also, some patterns (column sequences) may have only a few of supporting rows. These patterns are not very interest-

ing either since they are not statistically significant. We thus modify the basic OPSM problem so that only those OPSMs with

a significant pattern length and a significant support are reported.

Problem Statement 1 (Maximal size-constrained OPSM problem): Given a data matrix D, a supporting row threshold

nmin, and a column thresholdmmin, find all maximal in-sequence OPSMsS in D such thatnS ≥ nmin andmS ≥ mmin.

4. Algorithm for finding OPSMs

In this section, we first propose a new algorithm for exploring all maximal size-constrained in-sequence OPSMs. Sec-

ondly, we propose a novel data structure for fast patterns generation. An illustrative example is shown at the end of thissec-

tion.

4.1. Algorithm

Our algorithm is similar to the Apriori algorithm for miningAssociation rules [1]. In Apriori, it mines a transaction

databaseD′ and discovers allfrequentitemsets. First, it generates all itemsets with 2 items, we called them size-2 item-

sets. Then it scans theD′ and counts transactions contain the itemset, it is referredassupport. An itemset is frequent if

it’s support greater or equal to a user specified threshold. For all integer k> 2, it generates size-k itemsets by concatenat-

ing two size-(k-1) itemsets with (k-2) items in common. It scansD′ for counting the support for each itemset. It terminates

when there are no frequent size-(k+1) itemsets can be generated.

Property 1 (A priori property): A clusterS is an OPSM if and only if all proper subclusters ofS are also OPSM.

Proof (⇒:) Suppose a clusterS = (RS , ĈS) is an OPSM and a clusterP = (RS , ĈP) is a corresponding in-

sequence OPSM formed by permuting the columns ofS. By definition,pi,j ≤ pi,j+1, for all i ∈ {1, 2, ..., nS} and all

j ∈ {1, 2, ..., mS − 1}. The inequalities remain valid if some rows and columns are deleted fromP . Therefore for any clus-

ter S′ = (RS′ , CS′) whereRS′ ⊆ RS andCS′ ⊆ CS , an in-sequence OPSMP ′ can be formed by removing fromRS all

row indices that are not inRS′ , and fromCS′ all column indices that are not inCS′ . SinceS′ can be formed by permut-

ing the rows and columns ofP ′, S′ is an OPSM.

(⇐:) Suppose a clusterS and all its proper subclusters are OPSMs. Consider a clusterS′ is formed by removing the first

row of S. SinceS′ is an OPSM, there exist some integerj ∈ X such thatsi,j is the smallest element in rowi of S, ∀i ∈

{2, 3, ..., nS}. For the sake of contradiction, suppose the smallest element in the removed row exists at columnj′ /∈ X . This

meanss1,j′ < s1,j , ∀j ∈ X . Since the cluster formed by keeping only the first and thei-th rows ofS is an OPSM for alli ∈

{2, 3, ..., nS}, si,j′ ≤ si,j , ∀j ∈ X . But by the definition ofX , si,j ≤ si,j′ . This impliessi,j′ = si,j , which is a contradiction

sincej′ /∈ X . Therefore, there must exist an integerj′′ ∈ X s.t.s1,j′′ is the smallest element in the first row, and thus all

rows ofS. Consider a clusterT formed by removing thej′′-th column ofS. T is an OPSM since it is a proper subcluster

of S. By adding the removed column back toT , the resulting clusterS′′ must also be an OPSM since all rows of it have the

smallest element at the added column. SinceS can be formed by permuting the columns ofS′′, S′′ is an OPSM.

Our algorithm shares similar heuristic with Apriori algorithm, but with an additional constraint, the columns(the same role

of items in Apriori) selected have an order.

Property 2 (Transitivity): If S1 = (RS1
,< x1, x2,...,xi,y1,y2,...,yj >) and S2 = (RS2

,< y1, y2,...,yj ,z1,z2,...,zk >)

are two row-maximal in-sequence OPSMs andRS1

⋂

RS2
containsnmin or more indices, thenS = (RS1

⋂

RS2
,

< x1, x2, ..., xi, y1, y2, ..., yj , z1, z2, ..., zk >) is a row-maximal in-sequence OPSM.

Proof: letS′ be the row-maximal in-sequence OPSM witĥCS′ =< x1, x2, ..., xi, y1, y2, ..., yj, z1, z2, ..., zk >. If a row

index is inRS , i.e., in bothRS1
andRS2

, it must also be inRS′ . ThereforeS is an in-sequence OPSM. If a row indexi is not

in RS , then it is either not inRS1
or RS2

. In the former case,i must not be inRS′ because if it is inRS′ , then(RS1
∧ i, CS1

)

would be an OPSM as it is a proper subcluster ofS′, which is a contradiction since it implies thatS1 is not row-maximal.

The same argument holds for row indices that are not inRS2
. Therefore,S is row-maximal.

According to the transitivity property, we can formS from S1 andS2 without the need rescan the whole data matrix to

check for the row indices that are inRS .

Our algorithm takes a data setD with size|O| × |C|, a column thresholdmmin, and a supporting rows thresholdnmin

as input. It finds all row-maximal in-sequence OPSMs with twocolumns. For any pair of clustersS1 andS2, where the last

column index inĈS1
equals the first column index in̂CS2

. We create a new clusterS with RS = RS1

⋂

RS2
andĈS equals

ĈS1
with the last column index inĈS2

appended to the end. We only keepS if |RS | ≥ 2. After creating all row-maximal

in-sequence OPSMs with three columns, repeat the same procedures to form row-maximal in-sequence OPSMs with four

columns, and so on, until no more clusters can be formed. Whenever all clusters withk+1 columns are created, the algorithm

performs a maximality test on each clusterS with k columns against all clusters withk + 1 columns.S is maximal if there

exists no clusterS′ with k + 1 columns such thatRS = Rs′ andCS ⊂ CS′ . All suchS′ are added to the result set. Others

are discarded.

Completeness of the algorithm: For each row-maximal in-sequence OPSMS = (RS , < c1, c2, ..., cnS
>), there must

exist a row-maximal in-sequence OPSMS′
i = (RS′

i
, < ci, ci+1 >), whereRS ⊆ RS′

i
, for all i ∈ {1, 2, ..., nS − 1}, due to

the apriori property. Therefore according to the algorithm, the clustersS′′
i = (RS′′

i
, < ci, ci+1, ci+2 >) must be created for

all i ∈ {1, 2, ..., nS − 2}, whereRS ⊆ RS′′

i
. Iteratively, a clusterS∗ = (RS∗ , < c1, c2, ..., cnS

>) must be created where

RS ⊆ RS∗ . SinceS is row-maximal,RS∗ must equalRS , soS must be identified by the algorithm.

Correctness of the algorithm: By the transitivity property, all clusters being formed are row-maximal in-sequence OPSMs.

The ones being added to the result set are further proved to becolumn-maximal due to the maximality test and the fact that

all row-maximal in-sequence OPSMs with one more column are discovered.

4.2. Data Structure

In this sub-section, we propose a novel data structure that are capable efficient processing of (1) identifying all pairsof

length-k column sequences where the lastk − 1 indices of the first sequence equal the firstk − 1 indices of the second

sequence, and (2) intersecting two sets of row indices. It isreferred asHead-Tail Trees.

We build a head tree and a tail tree in each iteration. Both of them are balanced tree. Head tree and tail tree store all clusters

according to the firstk − 1 column indices and the lastk − 1 column indices respectively. Each tree node contains a column

index as key. Child nodes are ordered according to the columnindices lexicographically. Each set ofk − 1 column indices is

represented by a path from the root to a leaf. It is referred bypath sequence. Two sets share the firstx nodes if their firstx

indices are the same. Each leaf node in the head tree containspointers to clusters whose firstk − 1 column indices equals to

the path sequence. Pointers to clusters are stored in tail tree leaf node similarly. Each cluster stores its row indices by a list of

row indices.

Suppose we get a set of maximal in-sequence OPSMs of sequencelengthnS . For each clusterS = (RS , < c1, c2, ..., cnS
>

), we insert the cluster along the path< c1, c2, ..., cnS−1 > into the head tree and the path< c2, c3, ..., cnS
> into the tail

tree. Add a pointer toS from both leaf nodes.

By traversing Head-Tail trees in pre-order, new clusters are generated at leaf nodes. If the current leaf node at head tree

has path sequence lexicographically smaller(larger) thanthat of the current node of the tail tree, we continue the treetraversal

of the head(tail) tree. If two path sequences are equal, we try to join each pair of clusters in the two lists linked by the two

nodes to form new clusters.

SupposeS1 is a cluster in the list linked by a head tree node, andS2 is a cluster in the list linked by a tail tree node, where

S1 = (RS1
, < c2, ..., ck+1 >) andS2 = (RS2

, < c1, c2, ..., ck >) respectively. We skip this pair ifc1 = ck+1. Otherwise,

we intersect the 2 lists of row indices. If the resulting listhasnmin or more row indices, insert< c1, c2, ..., ck+1 > into the

head and tail trees for thek + 1 iteration, and add the pointer to the new cluster from both leaf nodes.

The intersection of 2 row indices is a time consuming operation. For each cluster, a list of row indices are stored as a list

of integers. However, if the average number of rows per cluster is large as compared to|C|, it is more efficient to store the

row indices in bit vectors of length|C|. The merge joins are replaced by fast bitwise AND operations.

w x y z

wz: 1,2,5 xw: 2,3,4,5 yw: 1,2,3,4,5 zw: 3,4,5

xy: 2,4

xz: 1,2,3,4,5

yx: 1,3,5

yz: 1,2,3,4,5

w x y z

wz: 1,2,5xw: 2,3,4,5

yw: 1,2,3,4,5

zw: 3,4,5

xy: 2,4

xz: 1,2,3,4,5

yx: 1,3,5

yz: 1,2,3,4,5

Figure 3. The head tree[left] and tail tree[right] for clust ers with 2 columns.

x y

xwz:2,5 xyw:2,4 xzw:3,4,5 ywz:1,2,5

xyz:2,4 yxz:1,3,5

yxw:3,5 yzw:3,4,5

w y z w x z

w y

xwz:2,5 xyw:2,4 xzw:3,4,5

ywz:1,2,5

xyz:2,4yxz:1,3,5yxw:3,5

yzw:3,4,5

x

z z w wz

z

w

Figure 4. The head tree[left] and tail tree[right] for clust ers with 3 columns.

We identify that the head tree built in the 1st iteration is sufficient for forming new clusters. We can only check if the

head tree leaf node path sequence equals to the tail tree 1st index of path sequence. We save insertion time by omitting the

insertions of new path sequences in the head tree. Since the head tree is fixed, we can even store it in a simple list. Howevera

larger number of unnecessary join operations may be performed. Suppose a cluster with column sequence< abc >. If both

trees are updated, a new cluster with column sequence< abcd > will be generated only if there exists a cluster with column

sequence< bcd >. If we only update the tail tree, the join operations consider a bigger set of clusters with path sequence

< cd >.

4.3. Example

w x y z
1 7 8 6 9
2 3 0 2 6
3 9 3 2 8
4 3 0 1 2
5 5 4 2 5

ĈS RS
wz 1,2,5
xw 2,3,4,5
xy 2,4
xz 1,2,3,4,5
yw 1,2,3,4,5
yx 1,3,5
yz 1,2,3,4,5
zw 3,4,5

ĈS RS
xwz 2,5
xyw 2,4
xyz 2,4
xzw 3,4,5
ywz 1,2,5
yxw 3,5
yxz 1,3,5
yzw 3,4,5

ĈS RS
yxzw 3,5

Table 1. Data Set D with Row-maximal in-sequence OPSMs.

The resulting trees are illustrated in Figure 3 to Figure 4. Figure 5 shows the 2-columns head tree of the bit-vector im-

plementation. There are some special cases to note. First, there is no clusters witĥCS = wx since only row 1 supports it.

Second, there is no clusters witĥCS = wy since no rows support it. Third,the value 5 appears twice in row 5, so it ap-

pears in both clusters witĥCS = wz andĈS = zw.

w x y z

wz:11001 xw:01111 yw:11111 zw:00111

xy:01010

xz:11111

yx:10101

yz:11111

Figure 5. The head tree for clusters with 2 columns using bit v ectors to store row indices.

w x y z

wz:1,2,5 xw:2,3,4,5 yw:1,2,3,4,5 zw:3,4,5

xy:2,4

xz:1,2,3,4,5

yx:1,3,5

yz:1,2,3,4,5

wz: 1,2,5xw: 2,3,4,5

yw: 1,2,3,4,5

zw: 3,4,5 xy: 2,4

xz: 1,2,3,4,5

yx: 1,3,5 yz: 1,2,3,4,5

H

T

H

H

H

H

H

H

H

T

T T T

T

T

T

Figure 6. The physical tree that combines both head tree and t ail tree for clusters with 2 columns.

5. Pruning and Optimizations

In this section, we propose several efficient rules to prune unpromising pattern using special properties of OPSM.

Optimization 1: For each pattern, we count the rows with column sequence starting with the first column index of the

pattern, it is referred asfirst count. Similarly, last countis kept for last column index of the pattern.

Suppose a dataset has 4 columns, namely a, b, c, d, and there isa rowo follows a pattern< badc >. It contributes 1 to

first count of each pattern start withb, and last count of each pattern end withc. Suppose a pattern< ac > has support of 10

and a last count of 4, then the supporting rows of pattern< acx > (wherex = b or d) is at most 6. In other words, ifnmin

is 7 or more, we can not have a cluster with pattern< acx >. Similarly, suppose a pattern< cd > has first count of 5, we

cannot have a pattern< xcd > (wherex = a or b) if threshold is 6 or more.

This optimization technique assumes there has no duplicatevalues in each row. A pre-processing step is needed to elimi-

nate all duplicate values in each row. It can be done by appending the column index to the end of each value.

Given patternpr has supportspr
, first countfpr

and last countlpr
; patternps has supportsps

, first countfps
and last count

lps
. A patternpnew is generated by extendingpr with ps, with unknown supportspnew

, first countfpnew
, and last countlpnew

.

According to the heuristic above, we knowspnew
is at most min(spr

- lpr
, sps

- fps
), fpnew

is at mostfpr
and at leastspnew

- (spr
- fpr

), andlpnew
is at mostlps

and at leastspnew
- (sps

- lps
). With the help of these formulas, we can skip support

counting of patterns with maximum support less than user inputted threshold. Moreover, we may use the upper bounds of

fpnew
andlpnew

to perform pruning in the next iteration.

Optimization 2:For example, the supporting rows of< ab > and the supporting rows of< ba > must sum up to|O|.

Similarly, if we have created node< ab > and know it’s support, we know it must equal the sum of supports of < abc >,

< acb > and< cab >. If we have the supports of< ab >, < abc > and< acb >, we can calculate the support of< cab >

eventually. In another view, support of< cab > can also be inferred from support counts of< ca >, < cba > and< bca >.

In all these cases, we can infer the support of some patterns by those of others. We only need one of these combinations to

get the support of< cab >. It is good to have multiple ways because some supports may not be available. For example, if

< abc > is infrequent, we do not have its support. Then, we cannot usethe combination of< ab >, < abc > and< acb >

for the inference. However, a longer pattern requires supports of more patterns to perform a single pruning.

6. Variations of OPSM

In this section, we propose several possible biologically significant variations of OPSM. They are Sign-constrained prob-

lem, Sign-constrained Bidirectional problem, and Error-tolerated problem. To ease understanding, we provide examples to

illustrate clustering results using the following data matrix D′ for different variation problems. We also propose simple meth-

ods for solving the problems.

a b c d
o1 10.3 21.8 29.8 2.3
o2 3.8 42.1 59.2 3.5
o3 10.4 13.8 15.9 -2.5
o4 51.1 58.2 59.9 68.1
o5 53.9 41.8 39.8 18.3
o6 0.3 21.8 20.9 2.3

Table 2. Data matrix D′.

6.1. Sign-constrained problem

In DNA micro-array, each entrydi,j , representing the expression level of gene i in sample j, is derived by comparing the

expression level of gene i, the gene of interest, and expression level of a reference gene. A positive value means the genei is

over-expressed at sample j. A negative value implies the gene i is under-expressed at sample j. Their biological meanings are

totally different.

Suppose a genega and a genegb exhibit the same rise and fall patterns on a set of samplesC′. ga is over-expressed onC′

andgb is under-expressed on a subset ofC′. We can not groupga andgb into the same cluster. Motivated by this, We come

up with the Sign-constrained problem.

Variation Problem 1 (Sign-constrained problem): Given a data matrixD, find all in-sequence OPSMsS in D such that for

all j ∈ {1, 2, ..., mS}, sign(s1,j) = sign(s2,j) = ... = sign(snD,j), wheresign() is the sign function defined as follows:

sign(x) =







1 if x ≥ 0

0 if x < 0
(1)

Example: Considering only rows{o1, o2, o3, o4} data matrixD′, there exists a sign-constrained clusterS1 = ({o1, o2, o3, o4}, <

abc >). Note that,S1 = ({o1, o2, o3}, < dabc >) is a maximal size-constrained cluster, but not a sign-constrained cluster.

The sign consistent constraint verification can be optimized by using a bitmap. Create a bitmap B of size n× m, where

Bi,j stores the sign of expression level of gene i in sample j. The verification can be replaced by fast bitwise NOT XOR

operations.

6.2. Sign-constrained Bidirectional problem

Given a sign-constrained maximal OPSM, we know all genes within this cluster with rows(genes)Oc exhibit a sequence

Cs. It is biological interesting to know if there exists any genesOd have the reverse sequence ofCs, as the activities of genes

Od suppresses the activity of genesOc, and vice versa. According to this argument, two genes have reverse expression se-

quences are highly related.

Variation Problem 2 (Sign-constrainedBidirectional problem): Given a data matrix D, find all in-sequence sign-constrained

bi-directional OPSMs inD.

A clusterS is a sign-constrained bi-directional OPSM if (1) it is a sign-constrained maximal OPSM, and (2) it can be

divided into of 2 subclustersPup and Pdown wherePup contains all rowsi ∈ {1, 2, ..., nPup
}, pi,j ≤ pi,j+1 for all j ∈

{1, 2, ..., mPup
− 1}. Pdown contains all rowsi ∈ {1, 2, ..., nPdown

}, pi,j ≥ pi,j+1 for all j ∈ {1, 2, ..., mPdown
− 1}. nPup

andnPdown
sum up tonP .

Example: ConsideringD′, nmin = 1, andmmin = 3, one of the sign-constrained bi-directional OPSMs isS1 =

({o1, o2, o3, o4, o5}, < abc >). (Note:({o1, o2, o3, o4}, < abc >) is a sign-constrained maximal OPSM.)

Given we discovered all sign-constrained maximal OPSMs in datasetD by the Head-tail tree approach, we can reuse the

tail tree to see if we can find any genes exhibit a reverse sequence.

Example: Suppose a pattern P is a sign-constrained maximal OPSM with pattern< abcd >. We can traverse the tail tree

by the path< cba > to check if there exist any row follows expression pattern< dcba >.

6.3. Error-tolerated problem

In [5], authors claimed that the measurements of expressionvalues in DNA microarrays may have errors. It initiates our

proposal of a robust error-tolerated OPSM model.

Variation Problem 3 (Error-tolerated problem): Given a data matrixD and an error thresholdǫ, find all in-sequenceǫ-

tolerated OPSMs inD.

A clusterS is a ǫ-tolerated OPSM if there exists a permutation of the columnssuch that in the permuted clusterP ,

pi,j+1 − pi,j ≥ −ǫ, for all i ∈ {1, 2, ..., nP} and all j ∈ {1, 2, ..., mP − 1}.

Example: ConsideringD′ andǫ be 2, there exists an error-tolerated clustersS1 = (o1, o2, o3, o4, o5, o6, < abc >). S1

cannot be discovered in orginial OPSM.

We propose a post-processing solution for the Error-tolerated problem. We first generate all size-constrained maximal

OPSMs. The input space is smaller here, as it only includes maximal OPSMs fullfilled the threshold requirements. An error-

tolerated clustercnew with pattern of length k+1 is generated only if there exists 2clusters with pattern of length k, and

these two patterns(sequence) differ at one position only. Moreover,cnew should have at leastnmin rows support (see Ta-

ble 4).

1. LetS be the set of all maximal OPSMs in dataD.
2. LetmaxLength be the length of the longest pattern exists inS.
3. For k =mmin to maxLength do
4. For eachci ∈ S with pattern of length k
5. Letpci

be the pattern ofci, pci
= < pi1 , pi2 , ..., pik

>

6. Find the set of maximal OPSMsSki
, where each clustercj belongs toSki

, cj ’s patternpcj

= < pj1 , pj2 , ..., pjk
>, pci

andpcj
are the same in k-1 positions, and position g is the only position

2 patterns differ
7. pit = pjt∀t ∈ 1, 2, ..., g − 1, g + 1, ...k

8. for eachcj ∈ Ski

9. R = Rci
∩ Rcj

;
10. p1 = < pi1 , pi2 , ..., pig , pjg , pik

>

11. p2 = < pi1 , pi2 , ..., pjg , pig , pik
>

12. R1 andR2 be 2 empty set of rows.
13. for each rowrv ∈ R

14. if (dv,pjg
− dv,pig

≥ −ǫ)
15. R1 = R1 ∪ rv;
16. if (dv,pig

− dv,pjg
≥ −ǫ)

17. R2 = R2 ∪ rv;
18. if (|R1| ≥ nmin)
19. cnew1

= R1, p1 or
20. insertcnew1

into S;
21. if (|R2| ≥ nmin)
22. cnew2

= R2, p2

23. insertcnew2
into S;

Table 3. Algorithm for finding Error-tolerated clusters.

7. Generalization

As we mentioned earlier, there are many diverse models for pattern-based clustering. In different applications and fordif-

ferent users, different types of patterns may be needed. Themeasurement of quality of patterns and clusters also differs in dif-

ferent models. For example, both the pClustering model and the OPSM model are quite different in technical details, but they

share similar philosophy. However, such a one method per variation approach may not be effective. In this section, we gener-

alize OPSM model and propose a new generic clustering model which includes most previously proposed pattern-based clus-

tering models(e.g. Biclustering model, pCluster model, OPSM model). Moreover, we prove some properties in the generic

model.

Definition 3 A matrixS = (RS , ĈS) is aPattern-based Clusterif and only if it satisfies the following inequalities:

∀i1, i2 ∈ {1, 2, ..., nS},∀j1, j2 ∈ {1, 2, ..., mS}, s.t.j1 < j2,

α ≤ (f(Si1,j2) − f(Si1,j1)) − (g(Si2,j2) − g(Si2,j1)) ≤ β

By setting specific constraints, the generic model can fit previously proposed specific definitions (refer Table 4).

f(x) g(x) α β

Perfectδ-cluster x x 0 0
pCluster, shifting x x -δ δ

pCluster, scaling log x log x -δ δ

OPSM x 0 0 +∞

Table 4. Constriants for Specific Clustering Model.

7.1. Anti-monotonicity

Suppose a matrix has some rows and columns do not satisfy the inequality, then they remain to violate the inequality when

new rows or columns are added to the matrix. This means all theclusters defined above intrinsically have the anti-monotonic

property: a matrix cannot be a cluster if any of its proper submatrixes is not a cluster. Notice that here we involve both rows

and columns in the definition of the anti-monotonic property. We can even observe a stronger property: a matrix is a cluster

(according to any of the above definitions) if and only if all its proper submatrices are clusters. The reason is quite trivial: an

inequality that holds in the matrixS must also hold in some of its submatrices, while an inequality that holds in a submatrix

must also hold in matrixS.

An imperfectδ-cluster is not anti-monotonic because it does not enforce the constraints locally for any pairs of rows and

columns, but only requires the whole cluster globally produces an aggregate score lower than a certain threshold.

7.2. Transitivity

As defined above, the transitivity property holds if for any two clustersS1 = (RS ,< x1, x2, ...,xi, y1, y2, ...,yj >) and

S2 = (RS ,< y1, y2, ...,yj , z1, z2, ...,zk >), S3 = (RS ,< x1, x2, ...,xi, y1, y2, ...,yj , z1, z2, ...,zk >) must also be a cluster.

We can start with the following simpler form: for any two clustersS1 = (RS , < x, y >) andS2 = (RS , < y, z >),

S3 = (RS , < x, y, z >) must also be a cluster. Now,

α ≤ (f(Si1,j2) − f(Si1,j1)) − (g(Si2,j2) − g(Si2,j1)) ≤ β (2)

α ≤ (f(Si1,j3) − f(Si1,j2)) − (g(Si2,j3) − g(Si2,j2)) ≤ β (3)

(2) + (3) :

2α ≤ (f(Si1,j3) − f(Si1,j1)) − (g(Si2,j3) − g(Si2,j1)) ≤ 2β (4)

This means the simpler form holds if bothα andβ are either 0 or unbounded (±∞). Perfectδ-cluster, and our OPSM

cluster definitions all fall into this category. The complexform can then be proved by arbitrarily pickingy1 asj2, and try

eachxi′ (1 ≤ i′ ≤ i) asj1 and eachzk′(1 ≤ k′ ≤ k) asj3.

8. Experiments

We implement the Head-Tail Trees algorithm in JAVA and test it on a PC with a P4 2.26 GHz CPU and 512 MB main mem-

ory. We evaluated the effectiveness and efficiency of the algorithm on solving theMaximal size-constrained OSPM problem

(Problem Statement 1) in synthetic and real life data sets. However, there is not any previous algorithm which is solvingex-

actly the same problem, we cannot make any quantitative comparison. Therefore, we compare our Head-Tail Trees algorithm

with the Apriori OPSM generation without Head-Tail Trees data structure. First, we describe the datasets employed. Sec-

ondly, we report the founding in the real data set. At last, weevaluate the performance of Head-Tail Trees.

8.1. Data Sets

[Synthetic Data] We generate synthetic datasets in tabularform. Initially, the table is filled with random values ranging

from 0 to 600, and then we embed a fixed number of OPSMs in the rawdata.

[Gene Expression Data] Gene expression data are being generated by DNA chips and other microarray techniques. The

yeast microarray contains expression levels of 2,884 genesunder 17 conditions (time points) [6]. The data set is presented as

a matrix. Each row corresponds to a gene and each column represents a condition under which the gene is developed. Each

entry represents the relative abundance of the mRNA of a geneunder a specific condition. The entry value, derived by scaling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 11 12 13 14 15 16 17 18 19 20

Number of columns

T
im

e
(s

e
c

)

OPSM

Head-Tail Trees

Figure 7. Scalability with respect to number of columns.

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of rows

T
im

e
 (

s
e

c
)

Head-Tail Trees

Figure 8. Scalability with respect to number of rows.

and logarithm from the original relative abundance, is in the range of 0 and 600. Biologists are interested in the findingsof a

subset of genes showing strikingly similar up-regulation and down-regulation under a subset of conditions [2].

8.2. Results from Real Data

We set the thresholdsnmin = 2 andmmin = 2. In table 8.2, we report the clusters found in the yeast microarray dataset

with OPSM, which match with the founding of Biclustering of Expression Data [2]. It shows that all genes within one func-

tional group shared some coherence patterns at certain timepoints. To name a few, function group [G2: chromosome, nuclear

segregation], the 2 member genes can form 48 length-12 order-preserving patterns, it implies the members share a similar re-

action pattern on 48 sets of size-12 time points. Function group [Late G1: DNA replication], the 14 member genes can form 3

length-5 order-preserving patterns, it implies the 14 member together share a similar pattern on 3 sets of size-5 time points. In-

terestingly, we discovered that genes with unknown function groups could not form long order-preserving patterns, it may

imply the genes within one unknown function group might havedifferent functions. The real data set result indicates there-

lax OPSM similarity model provides extra insight in understanding the data.

Functional Group number of genes OPSM with MAX length Number of OPSMs discovered
Early G1: cell cycle regulators 3 6 451
Early G1: DNA replication 6 5 153
Early G1: transcription factor, unknown phenotype 2 8 670
Early G1: mating pathway 3 7 1174
Early G1: glycolysis, respiration 9 3 57
Early G1: biosynthesis 2 9 3242
Early G1: miscellaneous 4 4 39
Early G1: unknown function 27 2 14
Late G1: cell cycle regulators 7 5 216
Late G1: chromosome, nuclear segregation 9 5 338
Late G1: budding, directional growth 7 5 119
Late G1: DNA replication 14 5 187
Late G1: DNA repair and recombination 11 4 152
Late G1: transcription, unknown/complex phenotype 3 7 657
Late G1: mating pathway 5 4 37
Late G1: biosynthesis 3 6 534
Late G1: miscellaneous 10 4 65
Late G1: unknown function 52 2 9
S: chromosome, nuclear segregation 12 4 92
S: DNA replication 4 4 129
S: transcription, unknown or complex phenotype 7 4 54
S: biosynthesis 6 4 70
S: miscellaneous 4 5 120
S: unknown function 28 2 10
G2: chromosome, nuclear segregation 2 12 25702
G2: budding, directional growth 4 5 161
G2: biosynthesis 3 9 1493
G2: miscellaneous 7 4 78
G2: unknown function 23 3 25
M: cell cycle regulators 4 8 802
M: chromosome, nuclear segregation 6 6 650
M: budding, directional growth 2 12 14670
M: transcription, unknown/complex phenotype 5 6 300
M: biosynthesis 2 10 4206
M: miscellaneous 3 6 389
M: unknown function 23 3 50
Multiple: cell cycle regulators 2 10 2970
Multiple: DNA replication 2 9 3902
Multiple: glycolysis, respiration 2 10 5112
Multiple: unknown function 19 2 0

Table 5. Data matrix D′.

8.3. Performance Analysis

We evaluate the performance of the Head-Tail Trees algorithm as we increase the number of objects and the number of di-

mensions in the synthetic data sets. The Head-Tail Trees algorithm is compared with the pure Apriori OPSM clusters gener-

ation without Head-Tail Trees. As we know, the number of potential order-preserving patterns grows exponentially withre-

spect to the number of columns, where the number of rows affects the set intersection operations. For experiments in Figure

8, the number of columns is 10,nmin is 10 andmmin is 2. We can observe that the Head-Tail Trees algorithm scales lin-

early to the increasing number of rows. Data sets used in Figure 7 are synthetic data with the number of rows fixed at 1000,

nmin is 10 andmmin is 2. We can observe that the execution time of pure Apriori OPSM grows exponentially as the num-

ber of columns increases. The Head-Tail Trees algorithm outperforms the OPSM significantly and the advantage becomes

more substantial with larger data set. When the number of columns more than 15, the pure OPSM takes a very long execu-

tion time, but the Head-Tail Trees algorithm can still response within a reasonable time.

9. Conclusions

Clustering by pattern similarity is an interesting and challenging problem. In many applications including DNA array

analysis, rows manifest consistent patterns on a subset of columns even they are not close in terms of distance. These pat-

terns are not captured by traditional(subspace) clustering algorithms. And most previously proposed solutions are not capa-

ble to report all pattern-based clusters. In this paper, we analyzed the OPSM model, which aimed at capturing the consistent

tendency by a subset of rows in a subset of dimensions in high dimensional space. We proposed a Head-Tail Trees struc-

ture and an Apriori-like algorithm that can discover all OPSMs. We also discussed some advanced pruning methods on the

OPSM model, some variations of the OPSM problem, and a generalization model of pattern-based clustering.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.VLDB, 1994.

[2] Y. Cheng and G. M. Church. Biclustering of expression data. ISMB, 2000.

[3] A. B.-D. et. al. Discovering local structure in gene expression data: the order-preserving submatrix problem.RECOMB, 2002.

[4] J. P. et. al. MaPle: A fast algorithm for maximal pattern-based clustering.ICDM, 2003.

[5] J. P. B. et. al. Significance and statistical errors in theanalysis of dna microarray data.PNAS, 2002.

[6] S. T. et al. Yeast micro data set.http://arep.med.harvard.edu/biclustering/yeast.matrix, 2000.

[7] Y. K. et. al. Spectral biclustering of microarray cancerdata: Co-clustering genes and conditions.Genome Research, 13(4):703–716,

2003.

[8] L. Lazzeroni and A. Owen. Plaid models for gene expression data.Statistica Sinica, 12:61–86, 2002.

[9] J. Liu and W. Wang. Op-cluster: Clustering by tendency inhigh dimensional space.ICDM, 2003.

[10] J. Liu, J. Yang, and W. Wang. Biclustering in gene expression data by tendency.CSB, 2004.

[11] H. Wang, F. Chu, W. Fan, P. Yu, and J. Pei. A fast algorithmfor subspace clustering by pattern similarity.SSDBM, 2004.

[12] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large data sets.SIGMOD, 2002.

[13] J. Yang, H. Wang, W. Wang, and P. Yu. Enhanced biclustering on expression data.BIBE, 2003.

