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Abstract

Background: Transcription factors function by binding different classes of regulatory
elements. The Encyclopedia of DNA Elements (ENCODE) project has recently
produced binding data for more than 100 transcription factors from about 500 ChIP-seq
experiments in multiple cell types. While this large amount of data creates a valuable
resource, it is nonetheless overwhelmingly complex and simultaneously incomplete
since it covers only a small fraction of all human transcription factors.

Results: As part of the consortium effort in providing a concise abstraction of the data
for facilitating various types of downstream analyses, we constructed statistical models
that capture the genomic features of three paired types of regions by machine-learning
methods: firstly, regions with active or inactive binding; secondly, those with
extremely high or low degrees of co-binding, termed HOT and LOT regions; and
finally, regulatory modules proximal or distal to genes. From the distal regulatory
modules, we developed computational pipelines to identify potential enhancers, many
of which were validated experimentally. We further associated the predicted enhancers
with potential target transcripts and the transcription factors involved. For HOT regions,
we found a significant fraction of transcription factor binding without clear sequence
motifs and showed that this observation could be related to strong DNA accessibility of

these regions.



Conclusions: Overall, the three pairs of regions exhibit intricate differences in

chromosomal locations, chromatin features, factors that bind them, and cell-type

specificity. Our machine learning approach enables us to identify features potentially

general to all transcription factors, including those not included in the data.

Background

Transcription factors (TFs) are proteins that bind specific DNA elements and regulate

gene transcription. There are approximately 1,700 to 1,900 TFs in human, including

about 1,400 manually curated sequence-specific TFs [1]. They bind different types of

DNA elements, including promoters, enhancers, silencers, insulators and locus control

regions [2]. While promoters are close to transcription start sites (TSSs), the other

types of elements could be far away from the genes that they regulate, and there are

no simple rules known to define their exact locations. For instance, enhancers can be

as far as one mega base pairs (1 Mbp) from the target gene in eukaryotes [3], and can

be both upstream and downstream of the promoter of the target gene [4].

One important step towards a thorough understanding of transcriptional regulation is

to catalog all regulatory elements in a genome. There are databases for regulatory

elements with experimental data [5-7]. The completeness of these databases has been



limited by a small number of validation experiments performed relative to the

expected number of regulatory elements, and a small amount of TF binding data

available relative to the total number of TFs. There are also a lot of computational

methods for predicting cis-regulatory modules, many of which are based on

evolutionary conservation and binding motif densities and distributions [8,9]. Since

these features are static information that does not take into account the dynamic

environment of DNA, such as DNA methylation, nucleosome occupancy and histone

modifications, these predictions usually have high false positive rates.

To systematically identify TF binding sites on a large scale, high-throughput methods

such as chromatin immunoprecipitation followed by sequencing (ChlIP-seq) [10,11]

have been invented. With a goal to identify all functional elements in the human

genome, the Encyclopedia of DNA Elements (ENCODE) project [12] has used

high-throughput methods to produce a large amount of experimental data for studying

TF binding sites. In the pilot phase, which aimed at studying 44 regions that sum up to

about 1% of the human genome [13], the binding sites of 18 sequence-specific TFs

and components of the general transcription machinery were identified using

chromatin immunoprecipitation followed by microarray (ChlP-chip) [14,15],

paired-end tag sequencing (ChIP-PET) [16], and sequence tag analysis of genomic



enrichment (STAGE) [17]. Analysis of a subset of these data revealed non-uniform

distribution of TF binding sites in the surveyed regions, statistical association of the

binding sties with both TSSs and transcription end sites of known genes, and

clustering of binding sites of different TFs [18].

With the success of the pilot phase, ENCODE has entered its production phase since

2007 to study DNA elements in the whole human genome. Both the scale and variety

of experiments have been greatly increased [19,20]. In terms of protein-DNA binding,

many ChlP-seq experiments have been performed to identify the binding sites of

sequence-specific TFs, general TFs, and chromatin-related factors, which we will call

transcription-related factors (TRFs) in general. About 500 ChIP-seq datasets have

been produced, involving more than 100 different TRFs in more than 70 cell lines

[20]. There are also matched expression data and chromatin features, such as histone

modifications from ChIP-seq experiments, and DNA accessibility from DNase |

hypersensitivity analysis [21,22] and formaldehyde-assisted isolation of regulatory

elements (FAIRE) [23], making the dataset a valuable resource for studying

transcriptional regulation.

Having this large amount of data available notwithstanding, it is still non-trivial to



identify all regulatory elements and provide useful annotations for them due to two

major reasons. First, the fraction of TRFs included in the experiments is still small

compared to the total number of TRFs in human. For instance, if a regulatory element

is only bound by TRFs not covered by these experiments, it cannot be identified

simply by cataloging all the observed TRF binding sites. Instead, it is necessary to

model each type of regulatory element by some general features that are available for

the whole genome, and use these features to extend the search of the elements to

regions not covered by the experiments.

Second, the overwhelming amount of data makes it difficult to extract useful

information. Processing hundreds of genome-scale data files requires a lot of

computational resources even for simple analysis tasks, not to mention the complexity

in cross-referencing other types of related data, such as gene expression and histone

modifications. Statistical significance of observations is also difficult to evaluate due

to non-uniform distribution of genomic elements and complex dependency structures

within a single dataset and between different datasets.

Here we report our work in using statistical methods to learn general properties of

different types of genomic regions defined by TRF binding. We also describe the



application of the learned models in locating all occurrences of these types of regions

in the whole human genome in different cell types, including locations with no direct

experimental binding data. Our main goal is to provide a concise and accessible

summary of the large amount of data in the form of several types of regions with clear

interpretations, to facilitate various kinds of downstream analyses.

Specifically, we report our identification of six different types of genomic regions that

can be grouped into three pairs: regions with active/inactive binding; regulatory

modules proximal to promoters/distal to genes; and regions with extremely high/low

degrees of co-occurrence of binding by factors that do not usually co-associate. We

discuss the chromosomal locations of these regions, their cell-type specificity,

chromatin features and different sets of TRFs that bind them, and show that a variety

of properties of our called regions are in strong agreement with prior knowledge of

TRF binding.

To further explore functional aspects of the identified regions, we report our work in

predicting enhancers from the distal regulatory modules and validating their activities

by reporter assays. We also link distal regulatory modules to potential target genes and

identify the TRFs involved. Finally, we suggest a potential relationship between



non-sequence-specific TRF binding and DNase hypersensitivity at regions with high

co-occurrence of TRF binding. All these whole-genome analyses would have been

difficult to carry out without the large cohort of data produced by ENCODE.

Related ideas for identifying different types of regions in the whole genome have

been proposed, both by groups within ENCODE and by other groups. One approach

is to use one or a few previously known features to define particular region types,

such as using DNase | hypersensitivity and some specific histone marks in identifying

enhancers. In comparison, our approach identifies feature patterns directly from data

using a machine learning framework, which has the potential to discover novel

features for specific region types. Another related idea is to segment the genome in an

‘unsupervised’ fashion, that is, to group regions based on observed data alone without

any predefined region types. This approach is most suitable for exploring new region

types. A big challenge of this approach is to interpret the resulting segments. In the

current work we focus on the six types of regions described, and take on a ‘supervised’

approach whenever possible, that is, to learn general properties of a region type using

known examples. When there are sufficient examples, the supervised approach is

usually preferred in identifying members of well-defined classes.



Results

Identification of six types of genomic regions based on TRF binding data

We selected five ENCODE cell lines that have the largest numbers of TRFs with

binding sites assayed by ChlP-seq (Table S1 in Additional file 1). In total, 117 TRFs

are included in the ENCODE datasets from the five cell lines. The data files were

processed by the ENCODE pipeline [24], which includes signal quality and

reproducibility tests by comparing data from replicate experiments, a uniformly

applied procedure for calling binding peaks (using PeakSeq [25] for our selected

subset of data), and the removal of problematic regions due to issues such as repeats

and sequences with low mappability.

For each of the five cell lines, we used the cell-line-specific TRF binding data to learn

patterns in chromatin features and gene expression levels using machine learning

methods. We then used the learned models to define six different types of genomic

regions that form three pairs: 1) binding active regions (BARs) and binding inactive

regions (BIRs); 2) promoter-proximal regulatory modules (PRMs) and gene-distal

regulatory modules (DRMs); and 3) high occupancy of TRF (HOT) regions, and low

occupancy of TRF (LOT) regions (Figure 1). In each pair, the two region types are

mutually exclusive. On the other hand, region types from different pairs may overlap.



For instance, DRMs are subsets of BARs, while some HOT regions overlap with

PRMs and DRMs. Each of the six types of regions, however, exhibits some unique

properties and we will discuss the six types separately. With the use of

cell-line-specific data, we aimed at identifying regions that reflect the internal states

of the particular cell types. For PRMs and DRMs, for example, our goal was to

identify modules that have active regulatory roles in the particular cell line from

which they were called, instead of modules that are only potentially active in some

unknown cell types [26].

Binding active regions and binding inactive regions

We first identified broad genomic regions that TRFs tend to bind, which we call

binding active regions (BARs). One simple way to define BARs is to collect all

regions covered by the binding peaks of the TRFs in our dataset, which are regions

with the strongest binding signals compared to the local genomic backgrounds.

However, while we are using one of the largest sets of ChlP-seq data currently

available, it contains only a small portion of the estimated 1,700 to 1,900 human TFs

[1]. We therefore took the regions covered by the TRF binding peaks as examples to

learn a statistical model based on the observed chromatin features of these regions for

each cell line using data produced by ENCODE (Materials and methods). We then



applied the model to score all regions in the whole human genome. Cross-validation

results show that our learned models can separate regions covered by TRF binding

peaks from other random regions well (Figures S1 and Figure S2 in Additional file 2).

Since some of the selected random regions may actually be bound by TRFs not in our

dataset, we do not expect 100% accuracy, and the observed accuracy values are

sufficiently high to indicate that our models have captured some general chromatin

properties of regions with active binding. We then defined a cutoff threshold to define

BARs for each cell line as regions with a score higher than it (Materials and methods).

To contrast with BARs, we also defined BIRs as regions that have low BAR scores

and are not covered by any binding peaks of the TRFs in our dataset.

Promoter-proximal regulatory modules and gene-distal regulatory modules

Among the TRF binding sites, one subset of particular interest comprises those close

to the TSSs of active genes, as they are likely actively involved in the regulation of

these genes in the corresponding cell lines. Depending on the distance from a TSS,

these regions may contain core promoters and proximal promoter elements [2]. We

call these regions promoter-proximal regulatory modules (PRMs) in general. To

define PRMs, instead of using an arbitrary distance threshold from TSSs, we



determined distance cutoffs according to chromatin feature patterns using a machine

learning framework. Specifically, for each cell line, we took TSSs of genes expressed

in the cell line as positive examples, and random non-TRF binding sites and distal

TRF binding sites as negative examples (Materials and methods). Expression of TSSs

was determined by ENCODE data from cap-analysis of gene expression (CAGE) [27],

paired-end diTag (PET) [28], and RNA sequencing (RNA-seq) [29,30]. Based on the

examples, a discriminative model was learned using chromatin features and TRF

binding data of the cell line as explanatory variables. The resulting models separated

positive and negative examples well in all cell lines (Figures S3 and S4 in Additional

file 2). Finally we used the learned models to give PRM scores to all regions in the

whole genome. Since in this case we have a relatively complete set of positive

examples from annotated genes, we used a more stringent threshold to call PRMs

(Materials and methods).

In contrast to PRMs, there are also regulatory modules that are more distal to

promoters. For example, enhancers are frequently thousands of bases pairs upstream

or downstream of a promoter, and they can be within an intron of a gene [2]. To study

properties unique to this type of DNA element, we focused on BARs at least 10 kbp

from any annotated coding and non-coding transcript (Materials and methods) and



removed from this list any identified PRMs, to eliminate properties superimposed

from annotated and potentially unannotated genes.

High occupancy of TRFs and low occupancy of TRFs regions

In addition to binding potential and relative distance from genic features, TRF binding

regions can also be classified by the likelihood of co-occurrence of TRF binding sites.

In separate studies we have observed widespread co-occurrence of binding sites of

different TRFs [20,31]. An extreme case is the binding of many TRFs at the same

narrow regions on the scale of several hundred base pairs. While it is physically

impossible to have many TRFs binding a small site at this scale at the same time in a

single cell, different TRFs can simultaneously bind to the same site in a population of

cells and be detected by a single ChlP-seq experiment. We were particularly interested

in regions bound by many TRFs that do not frequently co-associate globally in the

whole genome. We call this kind of event region-specific TRF co-occurrence. For

instance, since members of the c-Jun and c-Fos families dimerize to form the AP-1

transcription factor [32], their binding sites co-occur globally [20] and this kind of

co-occurrence is not regarded as region-specific TRF co-occurrence.

We derived a method to compute the degree of region-specific co-occurrence of TRF



binding sites, which takes into account both the binding signals and global

co-occurrence of TRFs (Materials and methods). Basically, binding peaks with

stronger, more reliable binding signals are weighted more, while sets of TRFs that

frequently co-occur in the whole genome are group-wise down-weighted.

We found that the degree of region-specific TRF co-occurrence forms a smooth

distribution with no obvious peaks except at around zero due to regions with no TRF

binding (Figure S5 in Additional file 2). We extracted the most extreme cases and

defined HOT regions and LOT regions as the regions with the highest and lowest (but

non-zero) degrees, respectively (Materials and methods). Genome-wide analyses of

HOT regions have been performed before in Caenorhabditis elegans [33] and

Drosophila [34]. In the current work we developed an improved computational

method to study these regions at the genome scale in human.

Genomic locations of the six types of regions

The six types of regions identified by our computational methods occupy from about

15.5 Mbp (PRMs in H1-hESC, equivalent to 0.50% of the human genome) to 1.39

Gbp (BIRs in GM12878, equivalent to 45% of the human genome) in the different

cell lines (Table 1). At a global scale, their locations are highly non-uniform and



inter-related (Figures 2a; Figure S6 in Additional file 2; visualization by Circos [35]).

BARs are correlated with gene density (Figure 2b). PRMs and DRMs are, by

definition, distributed according to gene locations. For HOT regions, about 70 to 80%

of them are within 10 kbp of annotated coding and non-coding genes, while the

remainder are at intergenic regions (Table 1). In contrast, only about half of the LOT

regions are close to or overlap genes, and the other half are within intergenic regions.

Figure 2c shows the relative locations of the six types of regions in an example area at

the beginning of the g-arm of chromosome 22 in K562 (visualization by IGV [36]).

There are large segments of DNA covered by BIRs with low gene activities as

measured by RNA-seq. BARs are, in general, distributed according to gene locations,

but there are two major subtypes. One subtype corresponds to broad areas with

extensive TRF binding and co-binding, as indicated by continuous BAR and HOT

regions, respectively (Figure 2c, box i). The other subtype involves regions with

interspersed active and inactive TRF binding, where only a small fraction of the

PRMs and DRMs intersect with HOT regions (Figure 2c, box ii). As discussed below,

the former likely corresponds to general open chromatin regions with potential

‘motifless’ binding, while the latter involves more sequence-specific binding.



In general, each of the six types of regions shows a high level of consistency across

different cell lines (Figure 3a; Figure S7 in Additional file 2), despite the fact that the

regions in different cell lines were called independently using datasets from different

sets of TRFs. For example, while no constraints were placed as to where the BARS

should be called in the whole genome, their resulting genomic distributions in the

different cell lines are highly similar (Figure S7A in Additional file 2).

Amid the general consistency, some subtle cell-type-specific patterns are also

observed. At the genome scale, H1-hESC is found to differ most from the other cell

lines by having much lower average densities of all regions except BIRs, which

highlights the drastic difference between embryonic stem cells and differentiated cells.

Among the different chromosomes, there is a higher density of BARs on chromosome

19 in H1-hESC, many of which are DRMs (Figure 3a, box I; Figure S7A in

Additional file 2). The high density of BARs is consistent with both the intrinsic high

gene density of chromosome 19 [37], and the highest over-representation of genes

expressed on this chromosome in human embryonic stem cells, as previously

observed [38].

Some local regions also exhibit cell line specificity. For example, the p-arm of



chromosome 5 has a much higher density of DRMs in HelLa-S3 than the other cell

lines (Figure 3a, box ii). This region also has a high degree of region-specific

co-occurrence of TRF binding (Figure S7E in Additional file 2), which is not found in

the other four cell lines. There were previous reports that HeLa cells contain three to

five copies of isochromosome 5p [39], which may have caused stronger binding and

open chromatin signals.

We then systematically computed the overlap of each type of region in the different

cell lines. Overall, BIRs show the highest level of consistency, with 18% of all BIR

bins identified from the different cell lines commonly shared by all five cell lines, and

only 29% unique to one particular cell line (Figure 3b). In contrast, active regions

show higher levels of cell-line specificity. For example, 76% of the indentified HOT

regions are specific to only one cell line, which means, on average, each cell line

contributes about 15% unique regions to the whole set of HOT regions.

We also examined all combinations of the five cell lines, and found that Hep-G2

missed a substantial set of BIRs present in the other cell lines (Figure 3c, box i),

which can also be observed from a density plot (Figure S7B in Additional file 2). In

general, no two cell lines appear to be particularly more similar to each other than to



other cell lines in terms of the six types of regions.

Chromatin features of the six types of regions

We then studied various chromatin features of the six types of regions, including open

chromatin signatures and histone modifications. The set of histone modifications from

the ENCODE experiments consists of both active (for example, histone 3 lysine 4

tri-methylation (H3K4me3)) and repressive (for example, H3K9me3) marks, as well

as marks that are usually found at promoters (for example, H3K4me3), gene bodies

(for example, H3K36me3) and distal elements (for example, H3K4mel) (Table S2 in

Additional file 1) [40].

For each combination of cell line, region type and chromatin feature, we collected the

signal values of the feature at all regions of that type in the cell line to form a

distribution (Materials and methods). We then compared these distributions of

different types of regions. The full set of distributions is shown in Figure S8 in

Additional file 2 using box-and-whisker plots (visualization by JFreeChart [41]).

Figure 4 shows some of the characteristic chromatin features of the different regions.

For each type of data, we have picked a particular dataset from the K562 cell line for



illustration, but the general trends are also observed in other datasets in K562 and in

other cell lines.

BARs, PRMs and DRMs have strong open chromatin signals (Figure 4a,b), consistent

with their expected roles as active gene regulatory elements [21,23,42]. PRMs have

stronger H3K4me3 signals and DRMs have stronger H3K4me1l signals (Figure 4c.e),

which are expected since H3K4me3 is a signature of active promoters while

H3K4mel is an indicator of enhancers [43]. Both PRMs and DRMs have enriched

H3K4me2 signals over the whole genome, which is also consistent with previous

observations [40]. PRMs have stronger H3K36me3 and H3K79me2 signals (Figure

S8 in Additional file 2) than DRMs. These histone marks are found in transcribed

regions [44-46], and are thus good features for distinguishing between regulatory

elements that are close to and those that are far away from transcribed genes.

We notice that histone 3 lysine 27 acetlylation (H3K27ac), which is expected to be

enriched at enhancers [40], has much stronger signals at both PRMs and DRMs than

the genomic background. However, the enrichment is slightly stronger at PRMs than

DRMs. It is likely caused by a combination of reasons. First, our DRMs consist of all

kinds of distal regulatory elements, which may include non-enhancers such as



insulators and silencers that do not have strong H3K27ac signals. Second, some

enhancers are within 10 kbp of a gene, which are not included in the DRM set based

on our current definition. Third, some of our DRMs may be inactive or poised

enhancers, which have weaker H3K27ac signals [47], although they still have strong

H3K4mel signals in general. Finally, clear H3K27ac signals have also been

previously reported at promoters in four of the five cell lines we are considering, in

the ENCODE pilot regions based on ChIP-chip data [48], which suggests that this

histone modification may also have a functional role at promoters.

One slightly surprising result is that, compared to the genomic background, PRMs and

DRMs are not depleted of H3K9me3 signals, which were thought to be repressive

marks. Previous studies reported the presence of H3K9me3 at transcribed regions of

active genes [49,50]. Our results suggest the possibility that some active regulatory

elements may have both classical active marks (such as H3K4me3) and H3K9me3

simultaneously. When two different amino acid residues (H3K4 and H3K9) are

involved, it is also possible for the same histone protein to have both kinds of marks.

Since PRMs are highly associated with transcribed genes, we hypothesize that having

some strong active marks may be sufficient to counter the effects of repressive marks.



Both BIRs and LOT regions are depleted of most of the histone modifications relative

to the whole genome. BIRs are slightly more enriched for open chromatin and

repressive (H3K9me3 and H3K27me3) signals, which suggest that BIRs are more

accessible to TRFs but transcriptional activities are repressed, while LOT regions in

general have low DNA accessibility.

Comparing with the other five types of regions, HOT regions are characterized by

strong enrichment for almost all kinds of open chromatin and histone modification

signals. The enrichment over other types of regions is particularly strong for open

chromatin signals, indicating high accessibility of DNA at these regions.

TRFs that bind the six types of regions

We further studied the TRFs that bind the different types of regions by examining

their binding signals (Materials and methods). The whole set of results is shown in

Figure S8 in Additional file 2. The binding signals of some selected TRFs in K562 are

shown in Figure 5.

As expected, the binding signal of RNA polymerase Il (POL2RA) is strongly enriched

at PRMs compared to the genomic background, and at DRMs to a lesser extent. In



contrast, the binding signal of RNA polymerase 1l1 (POL3RA), which transcribes

some non-coding RNAs, such as rRNAs and tRNAs, is not enriched at PRMs and

only slightly enriched at DRMs.

DRMs have stronger binding signals of CTCF and the cohesin proteins RAD21 and

SMC3 than PRMs, which in turn have stronger binding signals than the whole

genome in general. The stronger signals at DRMs than PRMs is consistent with the

known role of CTCF in binding insulators [51,52] and the frequent co-occurrence of

the binding sites of CTCF and the cohesin complex [53,54]. On the other hand, the

stronger signals at PRMs than the genomic background suggest that CTCF also binds

some proximal regions, which may reflect the ability of it to act as a transcriptional

insulator, repressor or activator depending on the context of the binding site [55,56]. A

recent study also found that, contrary to the enhancer blocking model, CTCF may

actually promote communication between functional regulatory elements by

connecting promoters and enhancers through long-range DNA interactions [57].

EP300, which is found at some enhancers [58], has a slight enrichment at DRMs. The

same trend is also observed for GATAl and GATA2 (Figure 5d; Figure S8 in

Additional file 2), which were reported to enhance the expression of some genes



[59,60]. In comparison, some TRFs (such as E2F4) are strongly enriched at PRMs

compared to DRMs, and some (such as USF2) have almost the same enrichment at

PRMs and DRMs.

As defined, HOT regions have strong binding signals of many TRFs, a lot of which do

not usually bind the same sites. LOT regions, on the other hand, have only weak

binding signals.

In addition to binding signals measured from ChlP-seq experiments, we also studied

binding peaks of the TRFs called by the ENCODE procedure, which can be

considered as the locations with the strongest binding signals compared to the local

genomic background. For each TRF binding experiment, we computed the fraction of

peaks within each of the six types of regions and the intergenic portions of HOT and

LOT regions (Figure S9 in Additional file 2). In most cases, most binding peaks are

within BARs. Specifically, considering all five cell lines, in about half of the

experiments more than 90% of the binding peaks are within BARs. The distribution of

binding peaks between PRMs and DRMs generally agrees with our observations in

the analysis of binding signals. In K562, for example, E2F4 has 52% binding peaks at

PRMs and only 11% at DRMs, while GATAZ2 has the reverse trend, with 14% binding



peaks at PRMs and 26% at DRMs.

Some TRFs preferentially bind intergenic HOT regions. In K562, for example, 17%

of EP300 binding sites are at intergenic HOT regions, which is likely due to enhancers

in these regions. On the other hand, the RNA polymerase 11l protein POLR3G and the

TFIIB transcription initiation complex subunits BDP1, BRF1 and BRF2 have,

respectively, 29%, 24%, 30% and 24% of their binding sites at intergenic HOT

regions, which may mark promoters of yet unannotated non-coding genes.

Identification and validation of potential enhancers

To explore potential functional roles of our identified DRMs, we derived

computational methods for predicting distal enhancers and tested these predictions

using reporter assays.

First round of validation: human enhancers active in mouse embryos

We first predicted potential human enhancers that are active in mouse embryos on

embryonic day 11.5. Specifically, from the list of BARs, we selected those that are far

away from TSSs and exons, and scored them based on both their sequence

conservation and the presence of motifs of TRFs known to be expressed in mouse



embryos (Materials and methods). We then took the top 50 predictions, and randomly

chose 6 of them for experimental validation (Table S3 in Additional file 1). These six

regions were extended according to some experimental requirements, and tested for

enhancer activities in a mouse assay previously established [61]. These experiments

were performed by Dr Len Pennacchio’s group, for testing a larger cohort of, in total,

33 potential enhancers identified by several sub-groups of the ENCODE consortium

using different prediction methods (Pennacchio and The ENCODE Project

Consortium, unpublished data).

Among our 6 tested predictions, 5 (83%) were found to have enhancer activities in

various tissues with good reproducibility (Table 2; data available at the VISTA

database [6]). Interestingly, most predicted enhancers were found to be active in

tissues related to neurodevelopment, which is likely due to the particular set of

development-related TRFs we considered in our method.

Second round of validation: General human enhancers in the whole genome

With the initial success in the first round of small-scale experimental validations, we

set out to take on the more difficult task of predicting all enhancers in the human

genome. It was part of a larger effort of ENCODE to predict and experimentally



validate various types of DNA elements, including promoters, enhancers and

insulators. The predictions were made by different methods and validated by in vivo

assays in transgenic mouse embryos and Medaka fish [20].

In order to identify general enhancers, we modified our prediction procedure to

replace information specific to the mouse assay, such as the binding motifs of TRFs

expressed in mouse embryos, by some general features of enhancers, such as signals

of the histone modification H3K4mel. We developed two complementary methods,

and took the intersection of them as our high-confidence predictions (Materials and

methods). In total, we identified 13,539 potential enhancers (full list available at

supplementary web site [26]), among which 50 were randomly chosen; 20 of them

were tested by the mouse assay, and an independent set of 27 were tested by the

Medaka fish assay (Materials and methods).

The validation results for the mouse and fish assays are shown in Tables 3 and 4,

respectively. In the mouse experiments, 6 of the 20 (30%) tested sequences showed

enhancer activities in various types of tissues in the nose, heart, limb and tail. In the

fish experiments, 19 of the 27 (70%) tested sequences showed some enhancer

activities, out of which 15 (56%) had strong activities.



Eleven predictions were tested in both types of assays (Table 3). In seven cases,

enhancer activities were detected only in the fish experiments, which highlights the

condition specificity of enhancers and the benefits of combining results of multiple

types of experiments.

Our predictions achieved a higher success rate in the fish assay than a random

background set (1/10 = 10% with weak activities), a set of baseline predictions picked

from repeat-free regions with binding motifs in Transfac [62] (14/26 = 54% with

some activities, out of which 8/26 = 31% had strong activities), and a computational

method that segments the whole genome into different classes based on chromatin

features (17/29 = 59% with some activities, out of which 15/29 = 52% had strong

activities) [20].

Comparing the results of the two rounds of experimental validations, while it is hard

to draw a definitive conclusion due to the small number of predictions tested, the

success rate of our predictions in the first round appears to be higher. This is expected

as the problem settings for the two rounds are very different. In the first round, we

made only a small number of predictions, which correspond to the most confident



cases with the strongest signals. In contrast, in the second round, we made a much

larger number of predictions in order to identify all potential enhancers in the human

genome. The lower precision is at least partially compensated for by a higher recall

rate. Furthermore, in the first round of predictions we optimized our method for a

particular assay, while in the second round we adopted a more general procedure.

Some of our predicted enhancers in the second round may only be bound by TRFs

that are not expressed at the particular stages of the tested animals. Indeed, the

diversity of tissues in which some of our predictions were shown to be positive

suggests that they were targeted by a heterogeneous set of TRFs.

In summary, in the two rounds of validation experiments, 42 unique regions were

tested and 28 of them (67%) showed enhancer activities in at least one assay.

Identification of potential long-range TRF regulation through DRMs

As a next step to identifying distal regulatory elements with functional roles, we

studied potential target genes of the identified DRMs, and the TRFs that regulate

these genes through the DRMs. A method for associating potential target genes and

predicted enhancers identified by a genome segmentation approach has been recently

proposed [63]. The main idea was to look for pairs of predicted enhancers and genes



where the signals of some histone modifications characteristic for enhancers (such as

H3K4mel and H3K27ac) at the enhancer could predict the expression level of the

gene in the same pair across multiple cell lines. We used a similar approach to

associate our DRMs with potential target transcripts (Materials and methods; Figure

S10 in Additional file 2). However, instead of manually picking histone modifications

known to be related to a particular type of DRMs, we correlated all types of histone

modifications in our dataset with expression of transcripts in an exhaustive manner, so

that previously unknown functions of histone modifications at DRM sites may also be

discovered. To minimize false positives, we used a stringent correlation threshold

after correcting for multiple hypothesis testing. Subsequently, for each identified

DRM-target transcript pair, we associated TRFs that may be involved in the

long-range regulation by looking for TRFs with a binding peak at the DRM in a cell

line where there was a strong signal of the histone modification used in correlating the

pair. We also used these TRF-potential target gene pairs to form a distal regulatory

network and performed some additional analyses in a separate study [31].

For this set of analyses, we also used other ENCODE cell lines with both histone

modification and expression data in our dataset in addition to the five focused on in

this paper in order to increase statistical power (Materials and methods).



From the different types of histone modification and gene expression experiments, we

identified between 8 and 3,270 pairs of potential DRM-target transcripts. The distance

distributions between DRMs and target transcripts show some interesting patterns

(Figure 6a). For expression values measured by Poly A+ (Poly A enriched) RNA-seq

or Poly A+ CAGE, many of which are expected to be mRNAs of protein-coding

genes, DRMs as far away as 1 Mbp from the potential target transcript are as common

as those only about 100 kbp apart. In contrast, for transcripts measured by Poly A-

(Poly A depleted) RNA-seq, more of which are expected to be non-coding RNAs, the

frequency of DRM-target transcript pairs decreases as the distance between them

increases. For small RNAs, the number of DRM-target transcript pairs is much lower

than for long RNAS, but this is mainly due to a smaller number of available datasets

for small RNAs so that fewer transcripts survive the filtering conditions (Materials

and methods).

While some of the identified pairs may be false positives, there is no apparent

systematic bias in our procedure that may cause the observed difference between the

Poly A+ and Poly A- cases. We propose that the difference could be related to the

number of transcripts each DRM regulates. We observed that, in general, each DRM



regulates a larger number of Poly A+ transcripts than Poly A- transcripts (Figure 6b).

For example, on average, each DRM regulates 2.5 transcripts according to Poly A+

CAGE, but only 1.8 and 1.5 transcripts according to short RNA-seq and Poly A-

RNA-seq, respectively. Some of these cases are caused by single DRMs regulating

multiple transcripts of the same gene, due to protein-coding genes with many

isoforms. In some other cases, the difference is due to the regulation of more genes by

one DRM. As the distance between different genes is, on average, larger than the

distance between different transcripts of the same gene, it is the latter case that helps

explain the longer distance between DRMs and their potential target genes for Poly

A+ transcripts.

This explanation is consistent with a recent finding that DNA sometimes forms loops

through long-range interactions, to bring multiple anchor genes into close physical

proximity [64]. Such anchor genes were found to be more active than genes in loops

that involve only two DNA regions in terms of binding signals of RNA polymerase I1.

We also checked the number of DRMs by which each transcript is regulated. The

trends are similar for the different types of expression experiments (Figure 6¢). About

40 to 50% of transcripts are regulated by only one DRM, but there is also a significant



portion of transcripts regulated by two or more DRMs. As we have used a very

conservative procedure for calling DRM-target transcript pairs, we believe this is an

underestimate of the actual number of regulating DRMs per transcript.

Our procedure for associating DRMs and target transcripts could, in principle, detect

both statistically significant positive and negative correlations between the histone

modification signals at the DRM and the expression level of the target transcript. In

reality the vast majority (almost 100%) of our identified pairs have a positive

correlation. When we examined the actual types of histone modifications, we found

that enhancer-related marks, including H3K4mel, H3k4me2 and H3K27ac, are

involved in a large fraction of the significant correlations (Figure 6d). The active

promoter mark H3K4me3 is also involved in a large fraction of cases, which may

indicate unannotated transcripts (for example, non-coding transcripts) or a role of the

mark at some DRMs. We also observed the involvement of the active chromatin mark

H3K9ac in a smaller yet significant fraction of the pairs. Indeed, while H3K9ac is

most enriched at PRMs, it also has a clear enrichment at DRMs compared to the

genomic background (Figure S8 in Additional file 2). Finally, the presence of the

repressive mark H3K27me3 and active mark H3K36me3, usually found at gene

bodies in a small fraction of our cases, may be used to estimate the amount of false



positives on our list, although we cannot eliminate the possibility of their potential

roles in gene regulation at DRMs.

We then examined the TRFs associated with the DRM-target transcript pairs. We

found that DRMs potentially regulating Poly A+ transcripts have a higher fraction of

EP300 binding than both the set of all DRMs and the whole genome (except in

H1-hESC, which has too few DRMs to compute the fraction accurately; Table S4 in

Additional file 1). This observation suggests that the correlation method for

associating DRMs and target transcripts could help identify DRMs that have stronger

activities.

We also studied if there are CTCF binding sites between our DRMs and potential

target transcripts. Traditionally, CTCF is assumed to play a role in blocking enhancers

[65]. We found that in 97% of our DRM-target transcript pairs, there is at least one

CTCF binding peak between them, which suggests that CTCF is not generally

blocking long-range interactions for our set of identified cases. We hypothesize that

CTCF blocking may have a stronger effect for enhancers just a few kilo-base pairs

from TSSs due to space constraints, but for our DRMs, which are more distal from

TSSs, there is a higher flexibility of the DNA three-dimensional structure between the



DRM and the target transcript so that CTCF may play a smaller blocking role. In

addition, a recent study of CTCF-mediated chromatin interactions has suggested that

CTCF may actually facilitate the cross-talk between promoters and regulatory

elements [57], which may also explain some of our cases.

Motifless binding at HOT regions

In a separate analysis we have found that some ChIP-seq binding peaks do not have

strong DNA sequence motifs of the corresponding TRFs [20]. They also have lower

binding affinity in general. In the current study we explored a potential relationship

between these regions and our identified HOT regions.

For each TRF, we examined its binding peaks and identified those that do not contain

any previously known or newly discovered DNA binding motifs of it (Materials and

methods). We called them motifless binding peaks of the TRF. We then collected the

motifless binding peaks of all TRFs for each cell line, and compared them with our

HOT regions.

Using the whole set of binding peaks of all TRFs in each cell line as background, we

found that motifless binding peaks have very significant overlaps with our HOT



regions (Table 5). This is true no matter whether we consider all TRF peaks in the
whole genome, or only those in intergenic regions. In all cases, the z-score is more
than 25, which corresponds to a P-value <3 x 10™*%. A substantial portion of binding
at HOT regions is thus attributed to non-sequence-specific binding. In our separate
study, we found that motifless binding peaks have stronger DNase | hypersensitivity

signals [20], which is also a signature of our HOT regions (Figure 4).

Our analysis also highlights the need for a more comprehensive catalog of sequence
motifs of DNA binding proteins. If we instead define a TRF binding peak as motifless
as long as it lacks either a previously known motif or a newly discovered one - that is,
it could still have a motif from the other source - the overlap of the resulting
‘motifless’ peaks with our HOT regions becomes statistically insignificant. Requiring

a motifless binding peak to lack both types of motifs is likely more reliable.

Discussion

Methods for identifying regulatory modules in silico

There have been a lot of efforts in the past few years to identify transcriptional
regulatory modules computationally [8,9]. The majority of the methods rely on

evolutionary conservation and sequence-based features such as degenerate binding



motifs of TRFs. It is now well-accepted that protein-DNA binding depends not only

on these static features, but also on other dynamic factors such as chromatin states.

Recently, cell-specific chromatin features have been used to segment the human

genome into different types of regions [63], which marks an important step forward

towards the identification of cell-specific regulatory modules. In the current study a

lot of protein binding data are used as examples to learn statistical models for TRF

binding sites, taking even more chromatin features into account. We hope the six

types of regions defined in this study will serve as a good reference for future studies

of regulatory modules and for further improving computational methods for

identifying them.

Supervised and semi-supervised prediction of enhancers

Our procedure for identifying enhancers involved the use of ‘supervised’ machine

learning methods - methods that learn model parameters from known examples.

However, our overall pipeline is not truly supervised in that we used only supervised

models to learn regions needed by the procedure to identify enhancers, such as BARs

and PRMs. These regions were then used in an unsupervised manner in the final

prediction of enhancers. This design was driven by an insufficient number of

cell-type-specific positive and negative examples of enhancers. While there are large



enhancer catalogs, such as the VISTA database [6], most of the validation experiments

were done in specific assays (such as embryos of transgenic mouse) that may not be

appropriate as examples for other cell types due to the dynamic nature of protein

binding and gene regulation. In fact, when we tried to use data from VISTA to learn

direct supervised models for enhancers using chromatin data from our cell lines as

features, the prediction accuracy was low according to some left-out data not used in

model training. We hope that with the larger-scale validation efforts of ENCODE [20]

and other groups, more cell-type-specific data will become available and the

construction of highly reliable, supervised predictive models of enhancers will

become possible.

It is also useful to consider semi-supervised methods [66], which consider data

patterns of both regions of known types and other regions. For instance, one approach

worth investigating is combining the information captured by our method and some

segmentation methods [63,67]. As a first step towards this direction, we have taken

the intersection of the predicted enhancers produced by the two approaches, and

provide the files at the supplementary web site [26].

Accurate association of DRMs and target genes



Our procedure for associating DRMs and potential target genes is currently

constrained by a small number of cell types for which both histone modification and

gene expression data are available. Simply by chance it is possible to have a DRM

that appears highly correlated with a gene. It is also difficult to distinguish between

direct regulation and indirect correlations due to co-expressed genes. As a result, we

decided to use a very stringent procedure based on the Bonferroni correction method

for multiple-hypothesis testing, which is known to be too conservative. While the

procedure gives us some associations that are of higher confidence than ones possibly

called by a less stringent procedure, one obvious drawback is an expected high false

negative rate. Our analysis may also be biased, since the DRM-target transcript pairs

that survive the stringent criteria are likely the most extreme cases. We believe one

direct consequence is the lack of negatively correlated pairs on our identified list. It

appears that positive regulation events at enhancers result in more extreme positive

correlations than the negative correlations caused by negative regulation events at

DRMs such as silencers. We expect that a more complete picture of gene regulation

through DRMs will be drawn when data from more cell types become available.

Another promising direction for associating DRMs with target genes is by using

whole-genome DNA long-range interaction data, either involving a target protein that



mediates the interaction (such as ChlA-PET [28]) or without (such as Hi-C [68]).

Currently, there are few datasets available, and among these, some suffer low

reproducibility [64] and low resolution [68]. Some technological advancements that

lead to better data quality are already underway [69]. We hope that the study of

long-range gene regulation will be facilitated by large-scale, high-quality DNA

interaction data in the coming years.

Some possible interpretations of HOT regions and improvements of the calling

procedure

We have found that there are regions bound by many different TRFs in the same cell

line, which we call HOT regions. As discussed, the observed binding of many TRFs at

a small region may be due to the average of a cell population. We found that these

regions have high DNase | hypersensitivity in general, as well as high signals of

almost all types of histone modification (Figure 4). The strong signals suggest that

they could be regions with general open and accessible chromatin, where TRFs can

easily bind them even without cognate sequence motifs.

It has also been shown that the binding of a TRF may promote steady-state binding of

other TRFs, even for those that share the same DNA response elements [70]. This



observation was explained by an ‘assisted loading” mechanism, where the binding of a

TRF increases local chromatin accessibility, and makes it easier for other TRFs to

bind regions nearby. HOT regions could be extreme examples of such assisted

loading.

To further study HOT regions, it is of utmost importance to make sure that the

co-occurrence of binding of different TRFs is not due to experimental or

computational artifacts, such as erroneous read mapping (for example, by mapping all

reads of a broad repeat region to the same copy of the repeats, which would result in

an artificially strong binding signal of the region), or natural co-binding of TRF

co-factors. We have applied a rigorous procedure to eliminate as many of the issues in

data quality, reproducibility, mapping, and global co-binding as possible. We have

also partially taken into account the non-uniform nature of TRF binding in the whole

genome, by using a co-occurrence matrix of TRF binding peaks produced by a

method based on Genome Structure Correction [20,71]. We propose that the

procedure for calling HOT regions can be further improved by directly applying

Genome Structure Correction in evaluating the statistical significance of binding

profiles, and considering the local context of different regions. For example, it may be

more biologically interesting to see the binding of many TRFs at an unannotated



intergenic region than at the promoter of a highly expressed gene. To give a higher

HOT score to the former, the HOT region identification method needs to evaluate the

statistical significance based on a background distribution specific to the type of

regions of interest. It can be roughly done by calling HOT regions of different classes

of annotated elements (for example, promoters versus gene bodies versus intergenic

regions) separately. To deal with the large fraction of intergenic regions in the genome,

the functions of which are still not well understood, the unsupervised segmentation

approach [63,67] provides one systematic way to define the different element classes

at the genome scale.

Identified regions as a resource

We make available our three paired types of regions from the five cell lines as

supplementary files [26], in standard formats that can be easily loaded into genome

browsers as data tracks. We also provide some additional files, such as predicted

DRM-target transcript pairs and the TRFs involved. Details of all these files can be

found at the supplementary web site [26].

Materials and methods

Source of ENCODE data



The raw sequencing data for TRF binding (Table S1 in Additional file 1), histone

modification (Table S2 in Additional file 1), open chromatin signals and expression

values used in this study can be downloaded from the UCSC Genome Browser [72].

The complete list of datasets, their unique identifiers and download paths can be

found in Table S5 in Additional file 1.

Identifying BARs and BIRs

The human reference genome (build hg19) was divided into 100 bp bins. For each cell

line, we collected chromatin features from ENCODE and computed the average signal

of each feature across the 100 bp of each bin. The features include DNase |

hypersensitivity, FAIRE, and histone modifications [20]. Bins that overlap with the

binding peak of a TRF were collected as positive examples of TRF binding sites. To

avoid long running time of computer programs, 5,000 of these positive bins were

randomly sampled; 5,000 non-positive bins were randomly sampled from the whole

genome as negative examples. These two sets of examples were used to train random

forest classifiers using Weka [73] as follows. The examples were divided into ten

disjoint subsets with equal size. A ten-fold cross-validation procedure was applied,

with nine subsets used to train a classifier and the remaining subset used to test its

performance, where each of the ten subsets acted as the testing set in turn. Each time a



BAR score was given for each bin, and the order of these scores was used to construct

the receiver-operator-characteristic (ROC) and precision-recall (PR) curves. The final

accuracy values were computed as the average areas under the curves of the ten test

sets. Since the negative examples may contain binding peaks of TRFs not included in

the dataset and binding sites of the included TRFs that are not strong enough to be

called as peaks, the reported accuracy values are only rough estimates of the ability of

the learned models to identify binding active regions. The final list of BARs was

composed of bins with an average BAR score from the ten test sets larger than 0.9.

Bins with an average BAR score <0.1 and not overlapping binding peaks of any TRFs

in the dataset were collected to form the list of BIRSs.

Identifying PRMs and DRMs

A machine-learning procedure similar to the one for identifying BARs was applied to

identify PRMs. The same datasets were used as features of 100 bp bins. In this case,

the positive set was composed of bins at the TSSs of expressed genes, defined as

genes with at least one read per kilobase per million mapped reads (RPKM) [29] in an

RNA-seq experiment or at least 1 read per million mapped reads (RPM) in a CAGE

or diTag experiment conducted for the cell line. The negative examples were

composed of random bins from three different sets: 1) bins not overlapping with TRF



binding bins in the whole genome; 2) non-POL2RA TRF binding peaks at least

10,000 bp away from any coding and non-coding gene annotated in Gencode version

7 level 1 and level 2; and 3) bins not overlapping with TRF binding peaks between

1,000 and 5,000 bp upstream or between 200 and 1,000 bp downstream of a TSS. The

three subsets ensure that the negative set contains bins that are non-TRF binding, TRF

binding but not close to annotated genes, and promoter-proximal but with a lower

chance of TRF biding. The third subset was specifically included so that the resulting

models do not simply use open chromatin as the single most important feature to

identify PRMs. For each cell line, a model was trained to give a PRM score for each

bin. The average PRM score with exactly 1% negative examples higher than it was

used as the threshold. The final list of PRMs consists of bins with an average PRM

score higher than the threshold. The DRM bins were then defined as non-PRM BAR

bins at least 10 kbp from any Gencode version 7 level 1 and level 2 coding and

non-coding genes.

Identifying HOT and LOT regions

For each cell line, we grouped different experiments for the same TRF together and

computed the average binding signal for each 100 bp bin. The values were then

discretized into five values: top, second, and third 25 percentiles, fourth 25 percentile



that are not zeros, and zeros. The extra group for zeros was to handle the large number

of zeros in a typical ChiP-seq experiment for TRF binding. For each bin, we then

computed a degree of region-specific co-occurrence, which is a weighted sum of the

discretized values of the bin from the different TRFs. The weight of each TRF was

computed as follows. First, we took the global co-occurrence z-score matrix of TRF

binding peaks computed by using Genome Structure Correction [20,71]. A raw score

of each TRF was computed as the average z-score with all other TRFs in the matrix.

The raw score was then normalized linearly so that the TRF with the lowest score

received a weight of 1 and the TRF with the highest score received a weight of 1/n,

where n is the total number of TRFs with ChlP-seq data from the cell line. This

weighting scheme de-emphasizes TRFs that are globally co-associating with other

TRFs in the counting of region-specific co-occurrence of binding. The HOT and LOT

regions were then defined as the bins with the top 1% degrees of region-specific

co-occurrence and the bins with the bottom 1% non-zero degrees of region-specific

co-occurrence, respectively.

Constructing box-and-whisker plots for open chromatin, histone modification and

TRF binding signals

For each 100 bp bin within a type of regions and each open chromatin, histone



modification or TRF binding dataset, we computed the average signal value of the

dataset within the 100 bp bin. We represent the resulting distributions by

box-and-whisker plots. To prevent extreme outliers from dominating the scales of the

plots, we excluded outliers smaller than Q1 - 5 IQR and those larger than Q3 + 5 IQR,

where Q1 is the bottom 25th percentile, Q3 is the top 25th percentile, and IQR is the

inter-quartile range, defined as Q3 - Q1.

First round identification and validation of potential enhancers in mouse embryos

We combined the ENCODE chromatin data available for GM12878 and K562 as of

January 2010 to predict binding active regions using a pipeline similar to the one for

the BARs in Figure 1. We removed bins within 2 kbp upstream or 500 bp downstream

of Gencode TSSs, and bins within 1 kbp from Gencode and Refseq exons. We then

downloaded the phyloP conservation scores [74] of the resulting bins from the UCSC

Genome Browser [72] based on multiple sequence alignments of 44 vertebrate

genomes, and took the top 2% of the bins with the highest scores, corresponding to a

cutoff score of 1.2. We merged adjacent bins into longer regions, and kept only those

merged regions with a size between 0.8 and 4 kbp. After that, for each merged region

we counted the number of binding motifs of a set of TRFs known to be highly

expressed in mouse embryos based on a gene expression atlas [75]. The genes include



members of the OCT and SOX families among others. The motifs of these genes were

taken from Transfac [62]. The top 50 predictions with the highest binding motif

density were then used as candidates of potential enhancers.

The predictions were originally made according to human reference genome build

hg18. We used the LiftOver tool [76] at the UCSC genome browser to convert the

coordinates into human reference genome build hg19.

The enhancers were tested in embryos of transgenic mice on day E11.5 with a lacZ

reporter gene fused with an hsp68 promoter as previously described [61].

Second round, whole-genome identification and validation of potential enhancers

in mouse and Medaka fish embryos

We developed two methods to identify potential enhancers in the whole human

genome, and took the intersection of their predictions to form our candidate set for

experimental validation. We used data from K562, as the initial plan was to test the

enhancers in vitro in K562 cells.

The first method is a variation of the method for the first round of enhancer prediction.



We took the BARs and removed from them all bins either with a promoter score >0.8,

within 2 kbp from a Gencode version 3c TSS, intersecting with a Gencode exon, or

with a phastCons primate score <0.1 downloaded from the UCSC Genome Browser.

We then merged adjacent bins in the resulting set into longer regions, and removed

regions with no binding motifs of TRFs expressed in K562. The final list contains

55,857 regions.

The second method used a two-stage method to learn locations of TRF binding sites

from chromatin, conservation, sequence and gene annotation features. In the first

stage, large windows of 1 kbp were made and feature values were aggregated to learn

statistical models for distinguishing TRF binding peaks from random locations. In the

second stage, the shapes of TRF binding signals around binding peaks were used to

construct features for learning models that distinguish binding peaks from flanking

regions. From the resulting list of regions predicted to have active TRF binding,

repeats were removed and the high-scoring ones were kept. The list was then further

filtered by removing regions that overlap Gencode version 3c exons or within 2 kbp

from a Gencode TSS. Finally, we considered only candidate regions that involve

H3K4mel or H3k4me3 in their prediction process. The resulting list contains 56,256

regions.



We then combined the two lists by taking their intersection, and refined the

boundaries of each region so that each has a minimum length of 100 bp and a

maximum length of 700 bp. We further considered the high-confidence ones with

median H3K4mel or H3K4me3 signals >5. The final list contains 13,539 sequences

of potential enhancers.

The mouse assay was performed in same way as in the first round of validation. The

Medaka fish assay was performed over the first three days of development, as

described [20].

Associating DRMs with target transcripts and the TRFs involved

We took the union of the DRM bins identified from the five cell lines to form a

comprehensive set of non cell-line-specific potential DRM bins. We merged adjacent

bins into modules, allowing 100 bp gaps between any two DRM bins, resulting in

129,326 modules (Figure S10A in Additional file 2). We then took all Gencode

version 7 level 1 and level 2 transcripts, and filtered out those with <2 RPM/RPKM in

all cell lines with expression data of the transcript or less than two-fold expression

level difference among the cell lines. The resulting set contains 64,075 transcripts.



We considered four types of gene expression experiments in whole cells: Poly A+

RNA-seq, Poly A- RNA-seq, RNA-seq of short RNAs, and Poly A+ CAGE (Figure

S10B in Additional file 2). For each DRM, we considered only histone modifications

with at least a signal value of 2 in one or more cell lines, and at least a two-fold signal

difference among the cell lines. For the DRMs and transcripts that pass the above

selection criteria, we considered only pairs with at least seven matching cell lines for

both histone modification and gene expression data, and are on the same chromosome

no more than 1 Mbp apart, where this distance threshold was based on a recent

finding that there are few long-range DNA interactions that span more than 1 Mbp for

a TRF according to some ChlA-PET experiments [64]. Finally, we computed Pearson

correlations for these pairs, and kept the ones with a Bonferroni-corrected P-value

<0.01 based on Fisher’s transformation. Depending on the type of histone

modifications and RNA experiments, 8 to 3,270 DRM-target transcript pairs were

identified (Figure S10B in Additional file 2).

We next associated TRFs with each DRM-target transcript pair by considering TRFs

with a binding peak at the DRM in a cell line with a signal value of 2 or more for the

histone modification involved, which resulted in 4 to 2,129 potential TRF-target



transcript pairs connected by the DRMs.

Defining motifless binding peaks and comparing them with HOT regions

For each cell line and each TRF with ChlIP-seq experiments in the cell line, we

collected the binding peaks of the TRF, and identified the ones that do not contain a

binding sequence motif of it. This requires that the binding peak contains neither a

previously known motif nor a motif newly discovered from ENCODE data. These

two lists of motifs and their occurrences in the human genome were produced by a

separate pipeline [77]. For each cell line, we then collected all these regions to form

the set of motifless binding peaks for the cell line. In this procedure, a region is

defined as a motifless binding peak as long as one TRF has a binding peak there

without a corresponding sequence motif, but the region is allowed to contain sequence

motifs of other TRFs.

We then intersected the motifless binding peaks with our HOT regions. Since our

HOT regions were identified from the whole human genome but the motifless binding

peaks were all from ChIP-seq binding peaks, we first identified the subset of HOT

regions within these peaks. We then determined their intersection with the motifless

binding peaks, and evaluated the statistical significance of the intersection by block



sampling [71], using the whole set of binding peaks as the domain. For each cell line,

we took 100,000 random block samples and computed the intersection in each of

them in terms of base overlap ratios. The resulting distribution of intersection values

is expected to follow a Gaussian distribution, and we used the fitted Gaussian to

compute a z-score of our observed intersection value for each cell line. We also

repeated the whole procedure for only the intergenic regions, defined as regions at

least 10,000 bp from any Gencode version 7 level 1 and level 2 genes.
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Figure legends

Figure 1. Overview of the pipeline for identifying the six types of regions for one

cell line. The left side shows the input data involved. The right side shows how these

datasets were used to identify the regions. The same pipeline was applied to five

different cell lines. See Materials and methods for details. The color scheme for the

six regions is used in all figures and supplementary figures of the paper. CAGE,

cap-analysis of gene expression; exp., experiment.

Figure 2. Distribution of the six types of regions in the genome in K562. (a)

Densities of the regions in the whole genome, defined as the running fractions of

bases covered by the regions. The tracks are, respectively, from outermost to

innermost, the ideogram for the human karyotype (genome build hgl9), Gencode

version 7 level 1 and level 2 genes, BARs, BIRs, PRMs, DRMs, HOT regions and

LOT regions. The tracks are scaled separately to show density fluctuations. The

highlighted segment corresponds to the area in (b). (b) Zoom-in of chromosome 3 to

show the correlated fluctuations of the different types of regions. (c) Locations of the

six types of regions at the beginning of the g-arm of chromosome 22 in K562. Due to

the high density of genes, only a subset of the gene names is shown. Expression



values were measured by long poly-A+ RNA-seq of whole-cell RNA extract. A darker

color indicates a higher average expression level in the local region. Box i marks a

broad area with significant active TF binding and co-binding. Box ii marks an area

with many small interspersed active and inactive TF binding regions.

Figure 3. Distribution of the DRMs in the five different cell lines. (a) Densities of

the regions in the whole genome, defined as the running fractions of bases covered by

the regions. The tracks are, respectively, from the outermost to the innermost, the

ideogram for the human karyotype (genome build hg19), Gencode version 7 level 1

and level 2 genes, and regions in GM12878, H1-hESC, HelLa-S3, Hep-G2 and K562.

The five innermost tracks are all in the same scale. Box i shows an area with an

exceptionally high density of DRMs on chromosome 19 in the h1-hESC line. Box ii

shows an area with exceptionally high density of DRMs on chromosome 5 in

HeLa-S3 cells. (b) Fraction of bins covered by the six types of regions shared by

different numbers of cell lines. (c) Fraction of bins covered by the six types of regions

shared by the 31 possible combinations of the 5 cell lines. Box i marks the high

fraction of BIR bins shared by cell lines GM12878, H1-hESC, HelLa-S3, and K562.

Figure 4. Chromatin features of the six types of regions in K562. (a) DNase |



hypersensitivity from the dataset Uw.OpenChrom.K562.Dnase.Na (compare Figure

S8E in Additional file 2). (b) FAIRE signals from the dataset

Unc.OpenChrom.K562.Faire.Na. (c) H3K4mel signals from the dataset

Broad.Histone.K562.H3K4mel.Std. (d) H3K4me2 signals from the dataset

Broad.Histone.K562.H3K4me2.Std. () H3K4me3 signals from the dataset

Broad.Histone.K562.H3K4me3.Std. (f) H3K9me3 signals from the dataset

Broad.Histone.K562.H3k9me3.Std. (g) H3K27ac signals from the dataset

Broad.Histone.K562.H3k27ac.Std. (h) H3K27me3 signals from the dataset

Uw.Histone.K562.H3k27me3.Std. (i) H3K36me3 signals from the dataset

Uw.Histone.K562.H3k36me3.Std. Each dataset ID has the format <Data

source>.<Experiment  type>.<Cell line>.<Open chromatin  method/histone

modification/TF>.<Experiment details>. The dot in each box-and-whisker plot is the

average value. Some outlier values are not shown. See Materials and methods for

details.

Figure 5. TRF binding signals of the six types of regions in K562. (a) CTCF

signals from the dataset Uta. Tfbs.K562.Ctcf.Na. (b) E2F4 signals from the datasets

Sydh.Tfbs.K562.E2f4.Ucd. (c) EP300 signals from the dataset

Sydh.Tfbs.K562.P300f4.Iggrab.  (d) GATA1l signals from the dataset



Sydh.Tfbs.K562.Gatal.Ucd. () POLR2A signals from the dataset

Sydh.Tfbs.K562.Pol2.Std. ()] POLR3G  signals  from  the  dataset

Sydh.Tfbs.K562.Pol3.Std. (9) RAD21 signals from the dataset

Sydh.Tfbs.K562.Rad21.Std. (h) SMC3 signals  from  the  dataset

Sydh.Tfbs.K562.Smc3ab9263.1ggrab. (i) USF2 signals from the dataset

Sydh.Tfbs.K562.Usf2.Std. Each dataset ID has the format <Data

source>.<Experiment  type>.<Cell line>.<Open chromatin  method/histone

modification/TF>.<Experiment details>. The dot in each box-and-whisker plot is the

average value. Some outlier values are not shown. See Materials and methods for

details.

Figure 6. Associating DRMs with potential target transcripts and TRFs involved.

(a) Distance distribution between DRMs and potential target transcripts for four

different types of gene expression experiments. (b) Distributions of the number of

transcripts that each DRM potentially regulates; 10+ denotes 10 or more transcripts.

(c) Distributions of the number of DRMs that each transcript is potentially regulated

by; 15+ denotes 15 or more DRMs. (d) Distributions of the number of DRM-target

transcript pairs with which each type of histone modification is involved.






Table 1. Total sizes of the six types of genomic regions derived from transcription

factor binding data in the five cell lines

Region type GM12878  H1-hESC HelLa-S3 Hep-G2 K562
Binding active regions (BARS) 109 Mbp 78.8 Mbp 93.6 Mbp  88.8 Mbp 98.7 Mbp
(3.5%) (2.6%) (3.0%) (2.9%) (3.2%)
Binding inactive regions (BIRS) 1,390 Mbp 1,200 Mbp 1,330 Mbp 401 Mbp 1,010 Mbp
(45%) (39%) (43%) (13%) (33%)
Promoter-proximal regulatory 25.4 Mbp 15.5 Mbp 20.7Mbp  17.1 Mbp 24.3 Mbp
modules (PRMs) (0.82%) (0.50%) (0.67%)  (0.55%) (0.79%)
Gene-distal regulatory modules 24.6 Mbp 18.2 Mbp 25.3Mbp  21.1 Mbp 22.0 Mbp
(DRMs) (0.80%) (0.59%) (0.82%)  (0.68%) (0.71%)
High occupancy of TF (HOT) 25.9 Mbp 26.4 Mbp 25.6 Mbp  26.3 Mbp 26.6 Mbp
regions (whole genome) (0.84%) (0.86%) (0.83%) (0.85%) (0.86%)
High occupancy of TF (HOT) 5.82 Mbp 6.43 Mbp 6.70 Mbp  6.74 Mbp 5.18 Mbp
regions (intergenic regions only) (0.19%) (0.21%) (0.22%) (0.22%) (0.17%)
Low occupancy of TF (LOT) 24.7 Mbp 23.5 Mbp 22.8 Mbp  23.8 Mbp 24.2 Mbp
regions (whole genome) (0.80%) (0.76%) (0.74%) (0.77%) (0.78%)
Low occupancy of TF (LOT) 10.7 Mbp 11.0 Mbp 10.1 Mbp  10.7 Mbp 12.4 Mbp
regions (intergenic regions only) (0.35%) (0.36%) (0.33%) (0.35%) (0.40%)

Numbers in parentheses are the percentages of the whole human genome covered by

the regions. Intergenic regions are defined as regions at least 10 kbp from any level 1

or level 2 gene defined in Gencode version 7.



Table 2. Results of the predicted enhancers for experimental validation in the

first round of mouse reporter assays

VISTA  Enhancer Tissues with enhancer
Coordinates (hg19) ID activity activity Reproducibility
Chr2 145339602 145341530 hs1802  Positive  Midbrain (mesencephalon) 8/8
Chr7 115451531 115454796 hs1798  Positive Eye 6/9
Forebrain 9/9
Hindbrain 6/9
(rhombencephalon)
Midbrain (mesencephalon) 6/9
Neural tube 6/9
Chr7 121967528 121971078 hs1809  Positive Forebrain 9/9
Hindbrain 719
(rhombencephalon)
Midbrain (mesencephalon) 7/9
Neural tube 5/9
Chr8 106602865 106607408 hs1800  Positive  Cranial nerve 8/10
Dorsal root ganglion 6/10
Midbrain (mesencephalon) 9/10
Trigeminal V (ganglion, 8/10
cranial)
Chrll 118308306 118311240 hs1793  Negative
Chrl4 57474144 57478090 hs1791  Positive  Midbrain (mesencephalon) 15/15




Table 3. Results of the predicted enhancers for experimental validation in the

second round of mouse reporter assays

Tissues with

VISTA  Corresponding ID  Enhancer enhancer
Coordinates (hg19) ID in mouse assay activity activity Reproducibility
Chrl 39,629,409 39,631,707 hs1999 ENH_DISCR_2 Negative
Chr2 7,025,512 7,027,025 hs2015 ENH_DISCR_18  Negative
Chr2 68,419,973 68,421,991 hs2040 Positive Nose 3/5
Chr2 159,885,988 159,889,012 hs2027 Positive Heart 11/11
Chr2 169,971,561 169,974,373 hs2034 ENH_DISCR_37  Negative
Chr3 65,589,981 65,591,565 hs2038 ENH_DISCR_41  Negative
Chr3 72,368,145 72,370,230 hs2006 Negative
Chr3 124,304,700 124,307,917 hs2031 ENH_DISCR_34  Negative
Chr3 141,579,463 141,580,810 hs2041 ENH_DISCR_44  Positive Limb 3/7
Chr4 109,893,210 109,895,294 hs2021 ENH_DISCR_24  Negative
Chr5 176,076,732 176,078,530 hs2007 Positive Heart 3/7
Chr8 59,769,794 59,772,587 hs2029 ENH_DISCR_32  Negative
Chr9 75,758,359 75,760,288 hs2000 Negative
Chrll 74,781,340 74,785,285 hs2047 Negative
Chr12 31,867,650 31,868,817 hs2043 Negative
Chrl6 89,384,737 89,387,643 hs2036 Negative
Chrl7 45,368,528 45,369,514 hs2033 Positive
Chrl7 73,347,819 73,348,933 hs2023 ENH_DISCR_26  Negative
Chr20 48,291,612 48,294,178 hs2045 ENH_DISCR 48  Negative
Chr22 21,953,368 21,954,302 hs2026 ENH_DISCR_29  Positive Tail 9/17




Table 4. Results of the predicted enhancers for experimental validation in the

Medaka fish reporter assays

Enhancer
Coordinates (hg19) ID activity Tissues with patterns
Chrl 39630305 39631117 ENH_DISCR_2 Positive Tectum, fin
Chrl 27448948 27449785 ENH_DISCR_38  Negative
Chr2 64877588 64878573 ENH_DISCR_16  Negative Not consistent
Chr2 7025939 7026794 ENH_DISCR_18 Positive Telencephalon
Chr2 169972473 169973432 ENH_DISCR_37  Positive Epidermis
Chr3 20009087 20009933 ENH_DISCR_14  Negative Not consistent
Chr3 71276246 71277150 ENH_DISCR_19  Negative Not consistent
Chr3 124305687 124306362 ENH_DISCR_34  Positive Epidermis
Chr3 65590259 65591167 ENH_DISCR 41  Positive Blood_heart
Chr3 141579681 141580471 ENH_DISCR 44  Weak Blood
Chr4 109893826 109894623 ENH_DISCR_24  Negative Not consistent
Chré 158653651 158654413 ENH_DISCR 1 Negative Not consistent/heart
Chr8 91239118 91239934 ENH_DISCR_17  Positive Telencephalon
Chr8 59770666 59771377 ENH_DISCR 32  Positive Telencephalon
Chr10 97054745 97055495 ENH_DISCR_47  Positive Epidermis
Chrl2 95567438 95568125 ENH_DISCR_35 Positive Blood, ear
Chrl2 755392 756170 ENH_DISCR 45 Weak Epidermis
Chr14 35805596 35806453 ENH_DISCR_21  Positive Epidermis, late
Chrl5 89638466 89639233 ENH_DISCR_12  Negative
Chrl7 46503536 46504314 ENH_DISCR_13  Positive Telencephalon
Chrl7 34953545 34954303 ENH_DISCR 22  Weak Epidermis, blood
Chrl7 73347806 73348761 ENH_DISCR_26  Negative Not consistent
Chrl7 76254538 76255291 ENH_DISCR 31  Weak Blood
Chr19 33162656 33163445 ENH_DISCR_40  Positive Blood
Chr20 48293080 48293844 ENH_DISCR_48 Positive Epidermis, blood
Chr22 28430853 28431678 ENH_DISCR_25  Positive Tectum
Chr22 21953421 21954149 ENH_DISCR 29  Positive Telencephalon




Table 5. Comparisons of motifless binding peaks and our HOT regions

Cell line

1. TF binding

peaks

2. HOT regions

3. HOT regions
within TF binding

peaks

4. Motifless
binding peaks

5. Intersection of
#3 and #4

6. Z-score of

intersection

GM12878

H1-hESC

HelLa-S3

Hep-G2

K562

123,982 (125 Mbp)
37,746 (29.5 Mbp)
98,963 (81.8 Mbp)
32,540 (20.8 Mbp)
112,657 (100 Mbp)
36,252 (26.1 Mbp)
193,990 (131 Mbp)
67,013 (36.9 Mbp)
159,029 (140 Mbp)
48,966 (34.9 Mbp)

92,592 (25.9 Mbp)
21,465 (5.82 Mbp)
105,036 (26.4 Mbp)
27,212 (6.43 Mbp)
95,054 (25.6 Mbp)
25,733 (6.70 Mbp)
95,998 (26.3 Mbp)
25,402 (6.74 Mbp)
81,436 (26.6 Mbp)
17,994 (5.18 Mbp)

77,583 (22.9 Mbp)
17,647 (5.02 Mbp)
74,727 (20.4 Mbp)
18,399 (4.73 Mbp)
57,045 (17.0 Mbp)
14,822 (4.30 Mbp)
64,147 (19.1 Mbp)
15,565 (4.50 Mbp)
59,716 (19.8 Mbp)
12,884 (3.84 Mbp)

69,568 (17.4 Mbp)
18,973 (4.67 Mbp)
38,631 (8.91 Mbp)
11,242 (2.55 Mbp)
47,556 (13.4 Mbp)
13,872 (3.81 Mbp)
63,523 (16.1 Mbp)
18,162 (4.54 Mbp)
71,912 (19.8 Mbp)
18,194 (4.80 Mbp)

43,581 (8.68 Mbp)
10,568 (2.07 Mbp)
25,042 (4.59 Mbp)
6,267 (1.13 Mbp)
26,112 (5.18 Mbp)
7,023 (1.40 Mbp)
31,179 (6.32 Mbp)
7,492 (1.52 Mbp)
37,108 (8.03 Mbp)
8,057 (1.67 Mbp)

86.5
49.8
42.0
25.3
46.5
38.2
75.4
58.2
63.4
534

In each cell, the number of regions is given, followed by the total length of DNA covered in parentheses. IR, intergenic regions; WG, whole

genome.



Additional files

Additional file 1: Supplementary materials. This file contains supplementary tables,

legends of supplementary figures, and information about a supplementary web site.

Additional file 2: Supplementary figures. This file contains supplementary figures.
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Supplementary materials

Supplementary tables

Table S1: Cell lines and transcription-related factors (TRFs) involved in the current
study.

Cell line Number of | List of TRFs in HGNC (HUGO Gene

TRFs Nomenclature Committee) gene symbols

GM12878  B-lymphoblastoid | 51 ATF3, BATF, BCL11A, BCL3, BCLAF1, BRCAL,

cell line CHD2, CTCF, EBF1, EGR1, ELF1, EP300, ETS1,
FOS, GABPA, IRF4, JUND, MAX, MEF2A,
MEF2C, NFE2, NFKB1, NR2C2, NRF1, PAXS,
PBX3, POLR2A, POLR3G, POU2F2, RADZ21,
REST, RFX5, RXRA, SIN3A, SIX5, SMC3, SP1,
SPI1, SRF, STAT3, TAF1, TBP, TCF12, USF1,
USF2, WRNIP1, YY1, ZBTB33, ZEB1, ZNF143,
2773

H1-hESC  Human 32 ATF3, BCL11A, BCL3, CTBP2, CTCF, EGR1,
embryonic stem EP300, GABPA, HDAC2, JUN, JUND, MAX,
cells, line H1 NANOG, NRF1, POLR2A, POUSF1, RAD21,

REST, RFX5, RXRA, SIN3A, SIX5, SP1, SRF,

SUZ12, TAF1, TAF7, TBP, TCF12, USF1, USF2,

YY1

HelLa-S3 Cervical 43 BDP1, BRCA1, BRF1, BRF2, CEBPB, CTCF,
carcinoma cell E2F1, E2F4, E2F6, ELK4, EP300, FOS, GABPA,
line GTF3C2, GTF2F1, IRF3, JUN, JUND, MAX,

MXI1, MYC, NR2C2, NRF1, POLR2A, POLR3A,

PRDM1, RAD21, REST, RFX5, SMARCA4,

SMARCB1, SMARCC1, SMARCC2, SMC3,

STAT1, STAT3, TAF1, TBP, TFAP2A, TFAP2C,

USF2, ZNF274,727273

Hep-G2 Hepatoblastoma 42 ATF3, BHLHE40, CEBPB, CHD2, CTCF, ELFI1,

cell line EP300, ESRRA, FOSL2, FOXAl, FOXA2,
GABPA, HDAC2, HNF4A, HNF4G, HSF1, JUN,
JUND, MAFF, MAFK, MYC, NR2C2, NR3Cl,
NRF1, POLR2A, PPARGC1A, RAD21, REST,
RFX5, RXRA, SIN3A, SP1, SREBF1, SRF, TAF1,




TBP, TCF12, TCF7L2, USF1, USF2, ZBTB33,

ZNF274
K562 Chronic 73 ATF3, BCL3, BCLAF1, BDP1, BRF1, BRF2,
myelogenous/ CCNT2, CEBPB, CHD2, CTCF, CTCFL, E2F4,
erythroleukemia E2F6, EGR1, ELF1, EP300, ETS1, FOS, FOSL1,
cell line GABPA, GATAl, GATA2, GTF2B, GTF2F1,

GTF3C2, HDAC2, HDACS8, HMGNS3, IRF1, JUN,
JUNB, JUND, MAFK, MAX, MXI1, MYC, NFE2,
NFYA, NFYB, NR2C2, NRF1, POLR2A,
POLR3A, POLR3G, RAD21, RDBP, REST,
SETDB1, SIN3A, SIRT6, SIX5 SMARCAA4,
SMARCB1, SMC3, SP1, SP2, SPI1, SRF, STAT1,
STAT2, TAFl, TAF7, TAL1l, TBP, THAPI,
TRIM28, USF1, USF2, YY1, ZBTB33, ZBTB7A,
ZNF263, ZNF274

Table S2: Types of histone modifications included in our dataset. A cell in the table is
marked with “Yes” if experimental data for the histone modification represented by
that row is available for the cell line represented by that column.

Histone GM12878 | H1-hESC HelLa-S3 Hep-G2 K562
modification

H2az Yes Yes Yes
H3K27ac Yes Yes Yes Yes Yes
H3K27me3 | Yes Yes Yes Yes
H3K36me3 | Yes Yes Yes Yes Yes
H3K4mel Yes Yes Yes Yes Yes
H3K4me2 Yes Yes Yes Yes Yes
H3K4me3 Yes Yes Yes Yes Yes
H3K79me2 | Yes Yes Yes Yes
H3K9%ac Yes Yes Yes Yes Yes
H3K9mel Yes
H3K9me3 Yes Yes
H4K20mel | Yes Yes Yes Yes Yes

Table S3: The 50 predicted enhancers for the first round of experimental validation in
mouse embryos. The 6 included into the reporter assays are marked with a gray
background. Coordinates are in human reference genome build hg19.

Chromosome Start position End position




chr2 119067130 119068029
chr2 133011930 133013629
chr2 145253130 145253929
chr2 145338030 145339229
2 fuesaseo0  fuesmoe

chr2 145353230 145354329
chr2 172957754 172959053
chr3 71257310 71258209

chr3 114170010 114170809
chr3 149212610 149213509
chr3 169385206 169386005
chrd 24473902 24474701

chrd 81082276 81083175

chr4 146857350 146858449
chr5 139088816 139089715
chr5 139090216 139091215
chr5 139487116 139487915
chr7 26524775 26525574

chr7 70037764 70038763

chr8 116463723 116464622
chr9 126596879 126597678
chr9 128521379 128522378
chr10 23487194 23488193
chr10 63546094 63546893
chr10 63663194 63663993
chr10 74007994 74008793
chr10 103484910 103485709
chril 74951752 74952751
chril 85906452 85907351
chir  [assossso  [ussossss
chrl2 20704433 20705432
chri2 49452933 49454732
chri2 74564833 74565632
chri4 32953349 32954348




chrl4 68773647 68774546
chr15 30515508 30516407
chr15 40574008 40574807
chr17 35084087 35085086
chr17 44269323 44270422
chr18 29542202 29543001
chr19 47613060 47614259
chrX 25008379 25009178
chrX 39965456 39966255

Table S4: Number of bins within EP300 binding peaks at different types of genomic
regions. The percentages are computed using the total number of bins in the
corresponding regions (e.g., DRMs in the particular cell line for the second column)
regardless of EP300 binding as denominators.

Whole genome DRMs DRMs in identified DRM-target transcript pairs

Poly A+ Poly A- Short Poly-A+

RNA-seq RNA-seq RNA-seq CAGE
GM12878 27,494 (0.09%) 6,772 (2.7%) 119 (6.4%) | 90 (4.4%) 5 (4.2%) 296 (8.8%)
H1-hESC 18,321 (0.06%) 3,902 (2.1%) 24 (1.6%) 42 (2.3%) 14 (5.1%) 50 (2.4%)
HelLa-S3 86,286 (0.28%) 28,688 (11.3%) | 133 (17.7%) | 95(11.0%) | 1(1.9%) 75 (18.3%)
Hep-G2 (protocol 1) | 68,233 (0.22%) 17,773 (8.4%)

316 (25.6%) | 427 (26.2%) | 6 (11.3%) 213 (31.3%)
Hep-G2 (protocol 2) | 135,551 (0.44%) | 36,087 (17.1%)
K562 12,576 (0.04%) 3,359 (1.5%) 78 (5.4%) 98 (3.8%) 18 (4.5%) 9 (2.0%)

Table S5: List of datasets used in this study. All data files can be downloaded from the

stated sub-directories of the following URL:
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/.

Type Sub-directory Dataset ID

TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneGm12878CtcfStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneH1hescCtcfStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneHelas3CtcfStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneHelas3Pol2bStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneHepg2CtcfStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneK562CtcfStd
TRF binding wgEncodeBroadHistone wgEncodeBroadHistoneK562Pol2bStd
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Atf3Pcr1x




TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878BatfPcri1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Bcl11aPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Bcl3Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Bclaf1m33V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878EbfPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Ebf1c8Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Egr1V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878EIf1sc631V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Ets1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878GabpPcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Irf4Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Irf4m17Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Mef2aPcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Mef2csc13268Pcr1x
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878NrsfPcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm128780ct2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878P300Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pax5c20Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pax5n19Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pbx3Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pol2Pcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pol24h8Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pou2f2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Pu1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Rad21V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878RxraPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Sin3ak20Pcr1x
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Six5Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Sp1Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878SrfPcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878SrfV0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Taf1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Tcf12Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Usf1Pcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Yy1V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Zbtb33Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsGm12878Z2eb1sc25388V0416102




TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescAtf3Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescBcl11aPcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescBcl3Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescCtcfsc5916V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescEgr1V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescEgr1V0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescGabpPcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescHdac2sc6296V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescJundV0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescNanogsc33759V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescNrsfPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescNrsf\V0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescP300Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescPol2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescPol2V0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescPol24h8Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescPol24h8V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescPou5f1sc9081V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescRad21V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescRxraV0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescSin3ak20Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescSix5Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescSp1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescSrfPcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescTaf1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescTaf1vV0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescTaf7sq8V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescTcf12Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescUsf1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsH1hescYy1c20Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHelas3GabpPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHelas3NrsfPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHelas3Pol2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHelas3Taf1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Atf3Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Bhlhe40V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2CtcfV0416101




TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2EIf1sc631V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2FosI2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Foxa1c20Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Foxa1sc101058Pcr1x
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Foxa2sc6554V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2GabpPcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Hdac2sc6296V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Hnf4ah171Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Hnf4gsc6558V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2JundPcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2NrsfPcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2P300Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2P300V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Pol2Pcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Rad21V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2RxraPcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Sin3ak20Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Sp1Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2SrfvV0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Taf1Pcr2x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Tcf12Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Usf1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Zbtb33Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsHepg2Zbtb33V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Bcl3Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Bclafim33Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Ctcflsc98982vV0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562E2f6h50V04 16102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Egr1Vv0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562EIf1sc631V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Ets1V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Fosl1sc183V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562GabpV0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Gata2cg2Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Hdac2sc6296V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562MaxV0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Nrsf\V0416102




TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562P0l2V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Pol24h8Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562P0l24h8V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Pu1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Rad21V0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Sin3ak20V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Six5Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Sp1Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Sp2sc643V0416102
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562SrfV0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Taf1Pcr1x

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Taf1Vv0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Taf7sq8V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Thap1sc98174V0416101
TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Usf1V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Yy1V0416101

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Yy1V0416102

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Zbtb33Pcrix

TRF binding wgEncodeHaibTfbs wgEncodeHaibTfbsK562Zbtb7asc34508V0416101
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Brca1clggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878CfosStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Chd21250lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Ctcfc20Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878EbfStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878JundStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878MaxStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Nfe2hStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Nfkblggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Nrf1lggmus

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Pol2lggmus

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Pol2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Pol3Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Rad21Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Rfx5n494Iggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Smc3ab9263lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Stat3lggmus

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Tbplggmus




TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Tr4Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Usf2Iggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Whiplggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Yy1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm12878Znf143166181apStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsGm128782zz3Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescCjunlggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescCtbp2Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescMaxUcd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescNrf1lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescRad21Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescRfx5n494lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescSuz12Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescTbpStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsH1hescUsf2Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Ap2alphaStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Ap2gammasStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Baf155lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Baf170lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Bdp1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Brca1iclggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Brf1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Brf2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Brg1lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Cebpblggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3CfosStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Cjunlggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3CmycStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3E2f1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3E2f4Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3E2f6Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3EIk4Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Gtf2f1raplggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Hae2f1Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Ini1lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Irf3Iggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Jundlggrab




TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3MaxStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Mxi1bhlhiggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Nrf1lggmus

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3P300n15Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Pol2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Pol2s2lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Prdm1viggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Rad21lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Rfx5n494Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Rpc155Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Smc3ab9263lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Stat11fng30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Stat3Iggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Tbplggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Tf3¢c110Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Tr4Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Usf2lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Znf274Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHelas3Z2zz3Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2CebpbForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Cebpblggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Chd21250Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Cjunlggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2ErraForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Grp20ForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Hnf4aForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Hsf1ForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Jundiggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Maffm8194iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Mafkab50322Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Matksc477Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Nrf1lggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Pgc1aForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Pol2ForskinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Pol2lggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Pol2PravastStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Rad21lggrab




TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Rfx5n494Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Srebp1InsinStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Tbplggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Tcf4Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2Usf2lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2bTr4Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsHepg2bzZnf274Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Atf3Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Bdp1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Brf1Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Brf2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Brg1lggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Ccnt2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cebpblggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562CfosStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Chd21250Ilggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cjunlfna6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cjunlfng30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cjunlfng6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562CjunStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cmyclfna30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562CmyclfnaéhStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cmyclfng30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Cmyclfng6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562CmycStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Gtf2bStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Gtf2f1raplggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Hmgn3Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Ini1lggmus

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Irf11fna30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Irf11fng6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562JundStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Mafkab50322lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562MaxStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Mxi1bhlhiggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562NelfeStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Nfe2Std




TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562NfyaStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562NfybStd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Nrf1lggrab

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562P300f4lggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol21fna30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol2Ifna6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol21fng30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol2lfng6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol2Iggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Pol3Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Rad21Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Rpc155Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Sirt6Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Smc3ab9263Iggrab
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat11fna30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat1lfna6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat11fng30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat1lfng6hStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat21fna30Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Stat2lfnaéhStd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Tal1sc12984Iggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Tbplggmus
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Tf3¢c110Std
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562Usf2Std

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bE2f4Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bE2f6Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bGata1Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bGata2Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bKap1Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bSetdb1MnasedUcd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bSetdb1Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bTr4Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bYy1Ucd

TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bZnf263Ucd
TRF binding wgEncodeSydhTfbs wgEncodeSydhTfbsK562bZnf274Ucd
TRF binding wgEncodeUchicagoTfbs wgEncodeUchicagoTfbsK562EfosControl




TRF binding wgEncodeUchicagoTfbs wgEncodeUchicagoTfbsK562Egata2Control
TRF binding wgEncodeUchicagoTfbs wgEncodeUchicagoTfbsK562Ehdac8Control
TRF binding wgEncodeUchicagoTfbs wgEncodeUchicagoTfbsK562EjunbControl
TRF binding wgEncodeUchicagoTfbs wgEncodeUchicagoTfbsK562EjundControl
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipGm12878Ctcf
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipGm12878Pol2
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipH1hescCmyc
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipH1hescCtcf
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipH1hescPol2
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipHelas3Ctcf
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipHelas3Pol2
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipHepg2Cmyc
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipHepg2Ctcf
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipHepg2Pol2
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipK562Cmyc
TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipK562Ctcf

TRF binding wgEncodeOpenChromChip wgEncodeOpenChromChipK562Pol2

TRF binding wgEncodeUwTfbs wgEncodeUwTfbsGm12878CtcfStd

TRF binding wgEncodeUwTfbs wgEncodeUwTfbsHelas3CtcfStd

TRF binding wgEncodeUwTfbs wgEncodeUwTfbsHepg2CtcfStd

TRF binding wgEncodeUwTfbs wgEncodeUwTfbsK562CtcfStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H3k9me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneGm12878H4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k4me2Std




Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneH1hescH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHelas3H4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHepg2H4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHmecH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k4me3Std




Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH3k9me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHsmmtH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH3k9me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneHuvecH4k20me 1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k79me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k9me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H3k9me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneK562H4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhaH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhaH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhaH3k36me3Std




Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhaH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhaH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhdfadH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH3k9me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhekH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhlfH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhlfH3k27me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhIfH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhlfH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhIfH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhlfH3k4me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhIfH3k9acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneNhIfH4k20me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH2azStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH3k27acStd

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH3k36me3Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH3k4me1Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH3k4me2Std

Histone modification

wgEncodeBroadHistone

wgEncodeBroadHistoneOsteoblH3k9me3Std

Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneK562H3k27me3Ucd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneK562H3k4me1Ucd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneK562H3k4me3Ucd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneK562H3k9acbUcd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneNt2d1H3k27me3Std

Histone modification

wgEncodeSydhHistone

wgEncodeSydhHistoneNt2d1H3k36me3bUcd




Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneNt2d1H3k4me1Ucd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneNt2d1H3k4me3Std
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneNt2d1H3k9acStd

Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneNt2d1H3k9me3Ucd
Histone modification |wgEncodeSydhHistone wgEncodeSydhHistoneU20sH3k9me3Ucd

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAg04449H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAg04450H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAg09309H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAg09319H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAg10803H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneAoafH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneBjH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneBjH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneBjH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneCaco2H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneCaco2H3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneCaco2H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm06990H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm06990H3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm06990H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm12878H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm12878H3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneGm12878H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneH7esH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneH7esH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneH7esH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHaspH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHbmecH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHcfH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHcfaaH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHcmH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHcpeH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHct116H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHeeH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHek293H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHelas3H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHelas3H3k36me3Std




Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHelas3H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHepg2H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHepg2H3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHepg2H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHI60H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHmecH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHmecH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHmfH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHpafH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHpfH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHreH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHreH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHreH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHrpeH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHuvecH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHuvecH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHuvecH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneHvmfH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneJurkatH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneK562H3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneK562H3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneK562H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneMcf7H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneNb4H3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneNhdfneoH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneNhekH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneNhekH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneNhekH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSaecH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSaecH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSaecH3k4me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSknshraH3k27me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSknshraH3k36me3Std

Histone modification

wgEncodeUwHistone

wgEncodeUwHistoneSknshraH3k4me3Std

Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseGm12878

Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseH1hesc

Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseHelas3




Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseHelas3lIfnadh

Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseHepg?2

Open chromatin

wgEncodeOpenChromDnase

wgEncodeOpenChromDnaseK562

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireGm12878

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireH1hesc

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireHelas3

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireHelas3Ifna4dh

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireHelas3lfng4h

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireHepg2

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireK562

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireK562Nabut

Open chromatin

wgEncodeOpenChromFaire

wgEncodeOpenChromFaireK5620hurea

Open chromatin wgEncodeUwDnase wgEncodeUwDnaseGm12878

Open chromatin wgEncodeUwDnase wgEncodeUwDnaseH1hesc

Open chromatin wgEncodeUwDnase wgEncodeUwDnaseHelas3

Open chromatin wgEncodeUwDnase wgEncodeUwDnaseHepg2

Open chromatin wgEncodeUwDnase wgEncodeUwDnaseK562

Expression wgEncodeRikenCage wgEncodeRikenCageA549CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageAg04450CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageBjCellPap

Expression wgEncodeRikenCage wgEncodeRikenCageGm12878CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageGm12878CytosolPam
Expression wgEncodeRikenCage wgEncodeRikenCageGm12878CytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageGm12878NucleolusTotal
Expression wgEncodeRikenCage wgEncodeRikenCageGm12878NucleusPam
Expression wgEncodeRikenCage wgEncodeRikenCageGm12878NucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageH1hescCellPam
Expression wgEncodeRikenCage wgEncodeRikenCageH1hescCellPap
Expression wgEncodeRikenCage wgEncodeRikenCageH1hescCytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageH1hescNucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageHelas3CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageHelas3CytosolPam
Expression wgEncodeRikenCage wgEncodeRikenCageHelas3CytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageHelas3NucleolusTotal
Expression wgEncodeRikenCage wgEncodeRikenCageHelas3NucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageHepg2CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageHepg2CytosolPam




Expression wgEncodeRikenCage wgEncodeRikenCageHepg2CytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageHepg2NucleolusTotal
Expression wgEncodeRikenCage wgEncodeRikenCageHepg2NucleusPam
Expression wgEncodeRikenCage wgEncodeRikenCageHepg2NucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageHuvecCellPap
Expression wgEncodeRikenCage wgEncodeRikenCageHuvecCytosolPam
Expression wgEncodeRikenCage wgEncodeRikenCageHuvecCytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageHuvecNucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageK562CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageK562ChromatinTotal
Expression wgEncodeRikenCage wgEncodeRikenCageK562CytosolPam
Expression wgEncodeRikenCage wgEncodeRikenCageK562CytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageK562NucleolusTotal
Expression wgEncodeRikenCage wgEncodeRikenCageK562NucleoplasmTotal
Expression wgEncodeRikenCage wgEncodeRikenCageK562NucleusPam
Expression wgEncodeRikenCage wgEncodeRikenCageK562NucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageK562PolysomePam
Expression wgEncodeRikenCage wgEncodeRikenCageMcf7CellPap
Expression wgEncodeRikenCage wgEncodeRikenCageNhekCellPap
Expression wgEncodeRikenCage wgEncodeRikenCageNhekCytosolPam
Expression wgEncodeRikenCage wgEncodeRikenCageNhekCytosolPap
Expression wgEncodeRikenCage wgEncodeRikenCageNhekNucleusPam
Expression wgEncodeRikenCage wgEncodeRikenCageNhekNucleusPap
Expression wgEncodeRikenCage wgEncodeRikenCageProstateCellPam
Expression wgEncodeRikenCage wgEncodeRikenCageSknshCellPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetGm12878CytosolPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetGm12878NucleusPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetHepg2CytosolPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetHepg2NucleusPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetHuvecCytosolPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetHuvecNucleusPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562ChromatinTotal
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562CytosolPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562NucleolusTotal
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562NucleoplasmTotal
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562NucleusPap
Expression wgEncodeGisRnaPet wgEncodeGisRnaPetK562PolysomePap




Expression wgEncodeGisRnaPet wgEncodeGisRnaPetNhekCytosolPap

Expression wgEncodeGisRnaPet wgEncodeGisRnaPetNhekNucleusPap

Expression wgEncodeGisRnaPet wgEncodeGisRnaPetProstateCellPap

Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiIShortRnaSeqA549CellShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiIShortRnaSeqA549CellShorttotalTap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiIShortRnaSeqAg04450CellShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshIShortRnaSeqBjCellShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiIShortRnaSeqGm12878CellShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshIShortRnaSeqGm12878CytosolShort
Expression wgEncodeCshIShortRnaSeq  (wgEncodeCshIShortRnaSeqGm12878NucleusShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshIShortRnaSeqH1hescCellShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSeqH1hescCytosolShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSeqH1hescNucleusShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiIShortRnaSegHelas3CellShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSegHelas3CytosolShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSeqHelas3NucleusShorttotalTap
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSeqHepg2CellShorttotalTap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqHepg2CytosolShorttotalTap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqHepg2NucleusShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqHuvecCellShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  (wgEncodeCshIShortRnaSeqHuvecCytosolShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshIShortRnaSeqHuvecNucleusShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  (wgEncodeCshIShortRnaSeqK562CellShort

Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiIShortRnaSegK562ChromatinShort
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiIShortRnaSeqK562CytosolShort
Expression wgEncodeCshiShortRnaSeq  |wgEncodeCshiShortRnaSeqK562NucleolusShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiIShortRnaSegK562NucleoplasmShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqK562NucleusShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqK562PolysomeShort
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiShortRnaSeqMcf7CellShorttotalTap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiIShortRnaSegNhekCellShorttotalTap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshiIShortRnaSegNhekCytosolShorttotalTap
Expression wgEncodeCshIShortRnaSeq  (wgEncodeCshIShortRnaSeqNhekNucleusShorttotal Tap
Expression wgEncodeCshIShortRnaSeq  |wgEncodeCshIShortRnaSeqProstateCellTotal
Expression wgEncodeCshIShortRnaSeq  (wgEncodeCshIShortRnaSeqSknshraCellShorttotal Tap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegA549CellLongnonpolya

Expression

wgEncodeCshiLongRnaSeq

wgEncodeCshiLongRnaSegA549CellPap




Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqAg04450CellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqAg04450CellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshiLongRnaSeqgBjCellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegBjCellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqGm12878CellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqGm12878CellPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqGm12878CytosolLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqGm12878CytosolPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqGm12878NucleusLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqGm12878NucleusPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqH1hescCellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqH1hescCellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqH1hescCytosolLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqH1hescCytosolPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegH1hescNucleusLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqH1hescNucleusPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqgHelas3CellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqgHelas3CellPap

Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqgHelas3CytosolLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHelas3CytosolPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHelas3NucleusLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHelas3NucleusPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHepg2CellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHepg2CellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHepg2CytosolLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHepg2CytosolPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHepg2NucleusLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegHepg2NucleusPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegHmecCellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHmecCellPap

Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegHsmmCellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegHsmmCellPap

Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHuvecCellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqHuvecCellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHuvecCytosolLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegHuvecCytosolPap

Expression

wgEncodeCshiLongRnaSeq

wgEncodeCshlLongRnaSegHuvecNucleusLongnonpolya




Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqHuvecNucleusPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqK562CellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegK562CellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqK562ChromatinTotal
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegK562CytosolLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegK562CytosolPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegK562NucleolusTotal
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegK562NucleoplasmTotal
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqgK562NucleusLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqK562NucleusPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqMcf7CellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqgMcf7CellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSeqgNhekCellLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegNhekCellPap

Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegNhekCytosolLongnonpolya
Expression wgEncodeCshiLongRnaSeq wgEncodeCshiLongRnaSegNhekCytosolPap
Expression wgEncodeCshiLongRnaSeq wgEncodeCshlLongRnaSegNhekNucleusLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegNhekNucleusPap
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSegNhlfCellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqgNhlifCellPap

Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqSknshraCellLongnonpolya
Expression wgEncodeCshlLongRnaSeq wgEncodeCshlLongRnaSeqSknshraCellPap

Supplementary figure legends

Figure S1: Cross-validation accuracy of the models learned for predicting binding
active regions (BARs).

Figure S2: Predicted BAR scores of 1) the positive examples (regions covered by
TRF binding peaks) not involved in model training, 2) the negative examples (other
random regions), and 3) all bins in the whole genome.

Figure S3: Cross-validation accuracy of the models learned for predicting
promoter-proximal regulatory modules (PRMs).

Figure S4: Predicted PRM scores of 1) the positive examples (TSSs of expressed
annotated genes) not involved in model training, 2) the negative examples (distal



regions with TRF binding and random regions with no TRF binding), and 3) all bins
in the whole genome.

Figure S5: Histograms of the degree of region-specific TRF co-occurrence of all
regions in the human genome.

Figure S6: Densities of the six types of regions in the whole genome in GM12878 (A),
H1-hESC (B), HelLa-S3 (C), Hep-G2 (D) and K562 (E), defined as the running
fractions of bases covered by the regions. The tracks are respectively, from the
outermost one to the innermost one, the ideogram for the human karyotype (genome
build hg19), Gencode version 7 level 1 and level 2 genes, BARs, BIRs, PRMs, DRMs,
HOT regions and LOT regions. The tracks are scaled separately to show density
fluctuations.

Figure S7: Distribution of the DRMs in GM12878 (A), H1-hESC (B), HeLa-S3 (C),
Hep-G2 (D) and K562 (E). The tracks are respectively, from the outermost one to the
innermost one, the ideogram for the human karyotype (genome build hg19), Gencode
version 7 level 1 and level 2 genes, regions in GM12878, H1-hESC, Hela-S3,
Hep-G2 and K562. The five innermost tracks in each panel are all in the same scale.

Figure S8: Distributions of open chromatin, histone modification and TRF binding
signals at different types of regions in GM12878 (A), H1-hESC (B), HeLa-S3 (C),
Hep-G2 (D) and K562 (E). The title of each sub-plot corresponds to the ID of the
dataset, in the format <Data source>.<Experiment type>.<Cell line>.<Open
chromatin method/ histone modification/ TRF>.<Experiment details>. The dot in each
box-and-whisker plot is the average value. Some outlier values are not shown. See
Methods for details.

Figure S9: Fraction of TRF binding peaks intersecting the six types of regions in
GM12878 (A), H1-hESC (B), HeLa-S3 (C), Hep-G2 (D) and K562 (E). In each panel,
the eight rows correspond to, from top to bottom, BARs, BIRs, PRMs, DRMs, HOT
regions, LOT regions, intergenic HOT regions and intergenic LOT regions,
respectively.

Figure S10: Pipeline for associating DRMs with potential target genes, and TRFs
involved. The whole pipeline consists of four main modules. The first and second
modules perform filtering of DRMs and transcripts, respectively (A). The third
module correlates histone modification signals at the DRMs with the expression



levels of transcripts across different cell lines (B). For the resulting DRM-transcript
pairs, the fourth module associates TRFs that are potentially involved (C).

Supplementary files

Supplementary files can be downloaded at the supplementary web site:
http://metatracks.encodenets.gersteinlab.org. Detailed descriptions of each file are
provided there.
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Figure S2
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Figure S5
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