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HARP: A Practical Projected Clustering Algorithm
Kevin Y. Yip, David W. Cheung,Member, IEEE,and Michael K. Ng

Abstract— In high-dimensional data, clusters can exist
in subspaces that hide themselves from traditional cluster-
ing methods. A number of algorithms have been proposed
to identify such projected clusters, but most of them rely on
some user parameters to guide the clustering process. The
clustering accuracy can be seriously degraded if incorrect
values are used. Unfortunately, in real situations it is
rarely possible for users to supply the parameter values
accurately, which causes practical difficulties in applying
these algorithms to real data. In this paper, we analyze
the major challenges of projected clustering and suggest
why these algorithms need to depend heavily on user
parameters. Based on the analysis, we propose a new
algorithm that exploits the clustering status to adjust the
internal thresholds dynamically without the assistance of
user parameters. According to the results of extensive
experiments on real and synthetic data, the new method
has excellent accuracy and usability. It outperformed the
other algorithms even when correct parameter values
were artificially supplied to them. The encouraging results
suggest that projected clustering can be a practical tool
for various kinds of real applications.

Index Terms— Data mining, Mining methods and algo-
rithms, Clustering, Bioinformatics.

I. I NTRODUCTION

Data mining is a process to discover unobserved
object relationships. Clustering is one of the most
well studied techniques, which concerns the parti-
tioning of similar objects into clusters such that ob-
jects in the same cluster share some unique proper-
ties. Although some clustering algorithms have been
proposed for thirty years [1], clustering remains
a hot research topic and new algorithms emerge
from time to time. This is mainly due to the ever-
increasing variety, complexity and size of datasets.
The need for faster and more specialized algorithms
grows with the production of huge amount of data
with diverse data characteristics.

In recent years, a special branch of clustering
called projected clustering has been receiving a lot
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(a) A set of 3D objects.

0 1 2 3 4 5 6 7 8 9 1 0

0

2

4

6

8

1 0

0
2

4
6

8
1 0

z

y

x

 C l u s t e r 1
 C l u s t e r 2
 C l u s t e r 3

(b) 2-D projected clusters.

Fig. 1. An example of projected clusters.

of attention from various communities. In projected
clustering, clusters exist in subspaces of the input
space defined by the dimensions1 of the dataset. The
similarity between different members of a cluster
can only be recognized in the specific subspace. A
dataset can contain a number of projected clusters,
each forms in a possibly distinct subspace.

A. Projected clusters

To illustrate the idea of projected clusters, con-
sider the objects in Figure 1a. Although the distribu-
tion of objects suggests some underlying structures,
it is hard to clearly define the clusters. The hidden
relationships between the objects are revealed in
Figure 1b, where the members of different clusters
are given different shapes. By projecting the objects
onto appropriate subspaces (see the shadows on the
axis planes), the cluster structures become apparent.
Should the corresponding subspaces of each cluster
be not identified, the circled objects in Figure 1b
would very likely be wrongly grouped into the same
cluster due to their closeness in the 3D input space.

Projected clusters can appear in various kinds of
data. Projected clustering has been successful in a
computer vision task [2], and has potential appli-
cations in e-commerce [3]. We will also show in

1In this paper, the terms “dimension” and “attribute” will be used
interchangeably to mean the same concept.
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Section IV that it outperforms traditional clustering
methods on a gene expression dataset for cancer
study and a food nutrition dataset.

For the sake of discussion, let us define a number
of terms and notations. Given a dataset withN ob-
jects and a setV of d dimensions, a projected cluster
Ci containsNi member objects, and is defined in a
subspace formed by the setVi of di dimensions.di

is referred to as thedimensionalityof cluster Ci.
As in most other studies (e.g. [2], [5]), we require
eachVi to be a subset ofV as the clustering results
are easier to interpret. We will call the dimensions
in Vi the relevant dimensionsof Ci, and the ones in
V −Vi the irrelevant dimensionsof it. The subspace
formed by the two sets of dimensions will be called
the relevant subspaceand irrelevant subspaceof Ci

respectively. A dimension can be relevant to zero,
one, or more clusters.

A dimension is relevant to a cluster if it helps
distinguish the members of the cluster from other
objects. In other words, in the relevant subspace of
a cluster, the members of the cluster are similar to
each other but dissimilar from other objects. In this
paper we assume object similarity is measured by a
distance metric, such as Euclidean distance. When
all objects are projected onto a relevant dimension
of a cluster, the projections of its members will
be concentrated on a small range of values that
contains few or no projections of other objects. The
value ranges on the various relevant dimensions are
called the “signature” of the cluster. For example,
in Figure 1, a possible signature of cluster 1 is
the axis-parallel rectangle on the x-y plane with
extreme points(6, 2) and (7, 3). If the projection
of an arbitrary object on the x-y plane falls into
this region, it is likely to be a member of cluster
1. Notice that we cannot simply conclude that the
objectis a member of cluster 1 since in real datasets
errors occur frequently. A cluster member may
not abide by the signature of the cluster on some
relevant dimensions (e.g. a member of cluster 1 may
have the coordinates(6, 8, 3) where the y-coordinate
does not agree with the signature), or a non-member
may have part of the signature by chance.

B. Projected clustering

The projected clustering problem is to identify
a set of clustersand their relevant dimensions
such that intra-cluster similarity is maximized while

inter-cluster similarity is minimized. This is very
similar to the traditional (non-projected) clustering
problem [6], but is more general in that it allows
each cluster to have only a subset of dimensions
being relevant to. In this paper we assume clusters
are disjoint, i.e., each object belongs either to one
cluster or the set of outliers.

We assume that there is a set ofreal clustersthat
best matches the domain knowledge. The relevant
dimensions of the real clusters are called thereal
relevant dimensionsof them. Although the real
clusters are rarely known to users, we will assume
the existence of them for the sake of discussion. As
clustering is an unsupervised-learning problem, all
clustering algorithms studied in this paper do not
make use of the information about real clusters.

In the remaining of this paper, the termcluster
alone will mean a cluster produced by a clustering
algorithm. The relevant dimensions of a cluster de-
termined by an algorithm will be called itsselected
dimensionsand the subspace formed by the dimen-
sions theselected subspace. A cluster iscorrect if it
contains objects all from the same real cluster, and
incorrect otherwise.

In Figure 1, cluster 1 has a perfect signature
along every relevant dimension in that no objects
in other clusters are projected onto the signature
range. Selecting a single relevant dimension (either
x or y) for the cluster is enough to unambiguously
identify all its members. In real datasets, due to the
presence of errors, it is usually needed to select
multiple relevant dimensions in order to identify
all the members correctly. A clustering algorithm
may assign arelevancevalue to each dimension of
a cluster to indicate how well it helps identify the
members of the cluster.

There are two major challenges in projected
clustering that make it distinctive from the tradi-
tional clustering problem. The first challenge is the
simultaneous determination of both cluster mem-
bers and selected dimensions. Cluster members are
determined by calculating object distances in the
selected subspace, while the selected dimensions
are determined by measuring the projected distances
between cluster members. One common approach
to tackling this chicken-and-egg problem is to form
some tentative clusters according to some heuristics,
determine their selected dimensions, and then refine
the cluster members based on the selected dimen-
sions. The heuristics being used are critical to the
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effectiveness of the algorithm. For instance, some
existing algorithms make use of object distances
in the input space to predict the members of a
cluster, which could be quite inaccurate should
the dimensionalities of the real clusters are small
relative to the dataset dimensionality.

The second challenge is the evaluation of cluster
quality, which is in turn related to the determination
of the dimensionality of each cluster. Traditionally,
objective functions are used to evaluate the quality
of clusters. For example, k-means [1] assumes that
each cluster is composed of objects distributed
closely around the centroid. The objective of k-
means is thus to minimize the average squared
distance between each object and the centroid of
its cluster. Some projected clustering algorithms [4],
[5] generalize the function for projected clustering
by considering only the selected dimensions in dis-
tance calculations. A weakness of this generalized
function is that a better objective score can always
be obtained by selecting fewer dimensions [7]. This
could be a problem if the cluster signatures are not
perfect, when each cluster will be tempted to select
only one best dimension, which is not enough to
identify all member objects correctly.

Some algorithms require users to supply the av-
erage cluster dimensionality as a constraint on the
number of selected dimensions. This is a simple
solution to the problem, but it in turn creates a
usability problem as users are rarely able to supply
the value accurately in real situations.

Another solution is to design a new objective
function for projected clustering. Summarizing the
proposals of some previous studies [2], [4], [5], a
projected cluster is likely to be correct if

1) Its selected dimensions have high relevance.
2) It has a large number of selected dimensions.
3) It contains a large number of objects.
The reason for the first criterion is trivial, and

the other two criteria ensure that the high relevance
of the selected dimensions is not due to random
chance [7]. It is favorable for a cluster to have
all three properties, but in reality optimizing one
property would usually sacrifice the other. Suppose
a dimension is selected for a cluster if the average
distance between the projected values is below a
certain threshold, then when the threshold is fixed,
adding more objects to a cluster will probably de-
crease the number of relevant dimensions qualified
for selection. In the same manner, if the members

of a cluster are fixed, raising the threshold will
probably reduce the number of dimensions qualified
for selection. Again, a simple way to deal with the
problem is to combine the criteria into a single
score, and let users to decide the relative importance
of each criterion, which would also introduce a
usability problem.

In summary, tentative clusters formation, clusters
evaluation and the determination of cluster dimen-
sionalities are the major difficulties of projected
clustering. In the next section, we will study in
more details some proposed projected clustering
algorithms and discuss their potential weaknesses.
In Section III we will introduce a new algorithm
that 1) avoids the formation of incorrect clusters by
allowing only the clusters with the highest chance
of being correct to be formed, and 2) determines the
dimensionality of clusters by dynamically adjusting
its internal thresholds without relying on user inputs.

II. RELATED WORK

The partitional approach PROCLUS [5] is based
on the k-medoids method [8]. As in traditional k-
medoids methods, some objects are initially chosen
as the medoids. But before assigning every object
in the dataset to the nearest medoid, each medoid
is first assigned a set of neighboring objects that
are close to it in the input space to form a tentative
cluster. For each tentative cluster, all dimensions are
sorted according to the average distance between
the projections of the medoid and the neighboring
objects. On averagel dimensions with the small-
est average distances are selected as the relevant
dimensions for each cluster, wherel is a user
parameter. Normal object assignment then resumes,
but the distance between an object and a medoid
is computed using only the selected dimensions.
Medoids with too few assigned objects are replaced
by some other objects to start a new iteration.

The user parameterl may introduce a usability
problem since its correct value is hard to determine.
Another potential problem arises when the real
clusters have few relevant dimensions, in which case
different members of a cluster may not be close to
each other in the full input space. As a result, when
a member of a real cluster is chosen as a medoid,
the neighboring objects assigned to it may not
come from the same real cluster. Subsequently, the
dimensions selected would not be the real relevant
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dimensions and the resulting cluster would be mixed
of objects from different real clusters.

Another partitional algorithm ORCLUS [4] was
proposed to improve PROCLUS. According to the
experimental results reported in [4], it is more
accurate and stable than PROCLUS. Nevertheless,
it still relies on user-supplied values in deciding the
number of dimensions to select for each cluster.

In the hypercube approach DOC and its variant
FastDOC [2], each cluster is defined as a hypercube
with width 2ω, whereω is a user parameter. The
clusters are formed one after another. To find a
cluster, a pivot point is randomly chosen as the
cluster center and a small set of objects is randomly
sampled to form a tentative cluster around the
pivot point. A dimension is selected if and only if
the distance between the projected values of every
sample and the pivot point on the dimension is no
more thanω. The tentative cluster is thus bounded
by a hypercube with width2ω. All objects in the
dataset falling into the hypercube are grouped to
form a candidate cluster. More random samples and
pivot points are then tried to form more candidate
clusters, and a specially designed function is used to
evaluate the quality of them. The candidate cluster
with the best evaluation score is accepted, and the
whole process repeats to find other clusters.

As with PROCLUS and ORCLUS, the selected
dimensions of DOC and FastDOC are determined
by a user parameter. In addition, they also restrict
each cluster to be a hypercube with equal width
along all relevant dimensions, which is unlikely to
be true in real data. Tentative clusters are formed by
random sampling, which avoids direct distance cal-
culations in the input space. However, the number
of tentative clusters required to try can become so
large that seriously affects the speed performance.

There are some other proposed algorithms that
determine object similarity based on the likeliness
of the rise and fall patterns of projected values
across the relevant dimensions instead of the ab-
solute distance between the objects in the relevant
subspace. We refer to this problem aspattern-based,
as opposed to thedistance-basedclustering problem
studied in this paper. Some pattern-based methods
include pCluster [3] and MaPle [9]. The pattern-
based approach has special values in some applica-
tion domains such as bioinformatics and time-series
data analysis. An interesting proposal for perform-
ing pattern-based clustering using a distance-based

projected clustering algorithm can be found in [7].
There are also two computational problems

closely related to projected clustering: subspace
clustering [10] and biclustering [11]. The goal of the
former problem is to search for all high-density re-
gions in all subspaces (as opposed to returning only
a small set of best clusters in projected clustering),
and that of the latter is to search for possibly non-
disjoint data submatrices that optimize certain (usu-
ally pattern-based) objective functions. Since the
main focus of this paper is on projected clustering,
we refer interested readers to the thorough survey
of the three problems in [7].

In the next section, we will introduce a new
algorithm HARP (a Hierarchical approach with
Automatic Relevant dimension selection for Pro-
jected clustering), which is based on the traditional
agglomerative hierarchical approach [12]. At the
beginning each object is treated as a cluster, which
are subsequently merged to form larger clusters.
The other stream of hierarchical algorithms is the
divisive methods, which put all objects into a single
cluster at the beginning, and iteratively divide a
cluster into smaller clusters. Some classical hierar-
chical algorithms can be found in [1], [12]. A brief
introduction to some important concepts of hierar-
chical algorithms, such as linkage and object/cluster
similarity can be found in [7]. Some recent de-
velopments of hierarchical clustering algorithms on
handling irregular-shaped clusters and categorical
attributes can be found in [13] and [14] respectively.

III. T HE NEW APPROACH

A. Relevance index, cluster quality and merge score

We first define a function for measuring the rele-
vance of a dimension to a cluster. In many previous
studies [2], [4], [5], relevance is directly measured
by the distance between projected values. This may
not be appropriate if the input dimensions have
different ranges of values. Consider an example
relation shown in Table I, where objects 1 and 2
form a real cluster. If relevance is measured by
the average within-cluster distance, dimension D is
most relevant to the cluster as the within-cluster
distance between projected values is smallest along
the dimension. Similarly, if the measurement is
based on average between-cluster distance, dimen-
sion C is most relevant to the cluster. Clearly, both
proposals are problematic as they do not satisfy
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TABLE I

AN EXAMPLE ILLUSTRATING THE IDEA OF RELEVANCE.

Dim. A Dim. B Dim. C Dim. D
Object 1 1 0.2 10 0.72
Object 2 2 0.3 30 0.70
Object 3 8 1.0 20 0.73
Object 4 9 0.9 40 0.71

the fundamental property of relevant dimensions:
helping the distinguishing of cluster members. In
comparison, dimensions A and B are actually more
relevant to the cluster.

It is observed that for a dimension to be relevant
to a cluster, not only should the projections of the
cluster members be close to each other, the close-
ness should also be uncommon among the distance
between the projections of any two objects. This
can be captured by a comparison of the variance
within the cluster (thelocal variance) and in the
whole dataset (theglobal variance). Suppose the
variance of projected values on dimensionvj in
cluster Ci and in the whole dataset areσ2

ij and
σ2

j respectively, therelevance indexof vj for Ci is
defined as follows:

Rij = 1−
σ2

ij

σ2
j

. (1)

The index gives a high value when the local
variance is small compared to the global variance.
This refers to the situation where the projections
of the cluster members on the dimension are close,
and the closeness is not due to a small average
distance between the projected values in the whole
dataset. A dimension receives an index value close
to the maximum value (one) if the local variance is
extremely small, which means the projections form
an excellent signature for identifying the cluster
members. Alternatively, if the local variance is only
as large as the global variance, the dimension will
receive an index value of zero. This suggests a
baseline for dimension selection: a negativeR value
indicates a dimension is not more relevant to a
cluster than to a random sample of objects. The
dimension should therefore not be selected. We will
discuss later how this baseline is used to define a
stopping criterion of HARP.

To prevent the index from being undefined in
some degenerating situations, we assume there does
not exist any dimension with zero global variance.
If such a dimension does exist, it is not useful at

all and can be safely removed before the clustering
process. Also, if a cluster contains only one object,
the index values of all dimensions are set to one.

In Table I, theR values of the four dimensions for
the cluster that contains objects 1 and 2 are 0.97,
0.97, -0.2 and -0.2 respectively, which match the
intuitive relevance of the dimensions.

Based on the relevance index, the quality of a
clusterCi can be measured as the sum of the index
values of all the selected dimensions:

Qi =
∑

vj∈Vi

Rij. (2)

In general, the more selected dimensions a cluster
has, and the larger are their respectiveR values,
the larger will be the value ofQ. We will discuss
how HARP determines the relevant dimensions of
each cluster later. At this point it can be assumed
that each cluster has a reasonable set of selected
dimensions.

Similarly, a score can be defined to evaluate the
merge of two clusters. Basically, if two clusters can
be merged to form a cluster with high quality, the
merge is a potentially good one, i.e., the two clusters
probably contain objects from the same real cluster.
However, in case the two merging clusters have a
large size difference, an unfavorable situation called
mutual disagreementcan occur. Consider a large
cluster with a thousand objects and a small one
with only five objects. If they are merged to form
a new cluster, the mean and variance of projected
values will highly resemble the original values of
the large cluster, which will dominate the choice
of the dimensions to be selected. If a dimension
is originally selected by the large cluster, it will
probably be selected by the new cluster also no
matter the projected values of the small cluster
are close to those of the large cluster or not. The
resulting cluster can have a highQ score even the
two clusters have a strong mutual disagreement on
the signatures of the resulting cluster.

To cope with this problem, we modify the rel-
evance index to take into account the mutual dis-
agreement effect. SupposeCi3 is the resulting clus-
ter formed by mergingCi1 and Ci2, the mutual-
disagreement-sensitive relevance index ofCi3 on
dimensionvj is defined as follows:

R∗
i3j =

Ri1j|i2 + Ri2j|i1
2

(3)
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Ri1j|i2 = 1−
σ2

i1j + (µi1j − µi2j)
2

σ2
j

= 1−
∑

x∈Ci1
(xj − µi2j)

2/Ni

σ2
j

, (4)

µi1j and µi2j are the mean projected values onvj

of the two clusters respectively. The numerator of
the second term ofRi1j|i2 is the average squared dis-
tance between the projected values ofCi1 onvj from
the mean projected value ofCi2. Ri2j|i1 is defined
similarly. The penalty term(µi1j − µi2j)

2 ensures
that the two clusters agree on the resulting signature.
When mutual disagreement occurs, the penalty term
will have a large value and the relevance index
value will be attenuated. On the other hand, if the
two mean values are equal, the relevance index
will depend only on the local variance of the two
clusters. The originalR index is used to determine
the quality of a cluster, while the modified indexR∗

is used to determine the merge score between two
clusters. WhenCi1 andCi2 are merged to formCi3,
the merge score is as follows:

MS(Ci1 , Ci2)

=
∑

vj∈Vi3

R∗
i3j

=
∑

vj∈Vi3

Ri1j|i2 + Ri2j|i1
2

=
∑

vj∈Vi3

1−
σ2

i1j + σ2
i2j + 2(µi1j − µi2j)

2

σ2
j

. (5)

B. Validation of similarity scores

The MS function concerns both the quality and
number of selected dimensions. As discussed in
Section I-B, a third criterion for evaluating cluster
quality is the cluster size. Suppose there is a setC
of objects all belong to real clusters with dimension
vj being irrelevant to them. If the size ofC is small,
it is common to find the objects inC being close
to each other alongvj by chance. IfC is large,
the chance for the same phenomenon to occur is
small. Looking in another way, if a cluster has a
high relevance index value at a dimension, the more
objects the cluster contains, the less likely the high
index value is merely by chance.

Since HARP is a hierarchical algorithm with each
initial cluster containing a single object, it is not
meaningful to incorporate cluster size into the merge

Projected value
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a b c d

Fig. 2. A histogram built from the distribution of projected values
of a typical dimension that is relevant to some real clusters.

score. However, it is possible to utilize thepoten-
tial cluster size, which can be obtained from the
distribution of projected values. Figure 2 shows the
histogram built from such a distribution of a typical
dimension that is relevant to some real clusters.
The peaks correspond to the signatures of the real
clusters. The base level at the troughs is likely due to
random values. Suppose a cluster contains members
with projected values within the interval[a, b], it has
a high potential to be merged with other clusters
to become a cluster with a significant size and a
high concentration of projected values around the
[a, b] region. On the other hand, if a cluster contains
members with projected values within the interval
[c, d], although the cluster may receive a highR
value at the dimension, the cluster is unable to keep
the high R value if it is to grow to a significant
size. The correspondingR value should therefore
be invalidated in order to prevent more objects to
be attracted to the cluster by the fake signature.

Based on the observation, a histogram-based val-
idation mechanism is developed to avoid the forma-
tion of incorrect clusters due to the above problem.
The idea is that if a dimension is relevant to a
cluster, the corresponding histogram should contain
a peak around the signature values (see regions A
and B in Figure 2). The width and height of the peak
depend on the properties of the cluster, but provided
the cluster has a significant size, the peak should
exceed the random noise level, which corresponds to
the mean frequency in case of a uniform distribution
(shown by the dotted line). Clusters covered by
bins that stay below the noise level are statistically
insignificant (region C), and their relevance index
values for the dimension will be rejected.

The validation mechanism contains two steps.
First, the Kolmogorov-Smirnov goodness of fit
test [15] is used to remove dimensions that are
likely irrelevant to all clusters, i.e., the dimensions
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whose distributions are essentially uniform. Each
remaining dimension is expected to be relevant to
at least one cluster. If a clusterCi has meanµij

and varianceσ2
ij at dimensionvj, we check the

mean frequency of the bins covering the range
[max(µij − 2σij, minij), min(µij + 2σij, maxij)],
whereminij andmaxij are the minimum and max-
imum projected values of the members ofCi on vj.
The use of a 4-standard deviation range covers 95%
of the projected values if they follow a Gaussian
distribution and ignore some abnormalities, while
minij andmaxij refine the boundaries of the range
for non-Gaussian cases. When selecting the relevant
dimensions of a cluster, if the mean frequency of
the bins is below the mean of all the bins,Rij will
be set to zero. When calculatingMS between two
clustersCi1 andCi2 , if either Ri1j or Ri2j is set to
zero by the validation mechanism,vj will make a
zero contribution to theMS score. An empirical
evaluation of the effectiveness of the validation
mechanism will be given in Section IV-D.2.

C. Dynamic threshold loosening

When we introduced theMS function in Sec-
tion III-A we assumed that there is a way to
determine the relevant dimensions of each cluster.
In this section we discuss how it is made possible
by the dynamic threshold loosening mechanism.

As discussed before, a cluster is likely to be
correct if it contains a large number of selected
dimensions, and the selected dimensions have high
relevance index values. This means merges that
form resulting clusters with both properties should
be performed earlier. This is achieved by two in-
ternal thresholdsRmin and dmin. Two clusters are
allowed to be merged if and only if the resulting
cluster hasdmin or more selected dimensions, and
a dimensionvj is selected for a potential clusterCi

if and only if R∗
ij ≥ Rmin. At any time, the two

thresholds define a set of allowed merges where the
actual merging order within the set is determined
by theMS scores.

At the beginning,Rmin and dmin are initial-
ized to the tightest (i.e., highest) values 1 andd
(dataset dimensionality) respectively. All allowed
merges produce clusters that contain identical ob-
jects, which must be correct. Whenever all qualified
merges have been performed, the thresholds will
be slightly loosened. As clustering proceeds, the

clusters grow bigger in size. The projections of the
cluster members on the real relevant dimensions
remain close to each other, but the chance of having
similar closeness of projections on other dimensions
drops, so as their relevance index values. This allows
the real relevant dimensions to be differentiated
from the irrelevant ones, which in turn ensures the
formation of correct clusters.

In order to guarantee the quality of clusters, the
two thresholds are associated with baseline values
such that when the baselines are reached, no further
loosening is allowed. As mentioned in Section III-A,
a negativeR value means that a dimension is very
unlikely to be relevant to a cluster. The baseline of
Rmin is thus set to zero. Fordmin, the baseline is set
to one, which is the minimum value for a cluster to
be defined as a projected cluster. We will see later
that the HARP algorithm allows users to specify
an optional target number of clusters. According
to our experience, if such a value is specified,
the algorithm usually finishes the clustering process
well before the thresholds reach their baselines. The
clusters produced thus contain selected dimensions
with R values much better than that of a random
set of projected values.

There are many possible ways to loosen the
threshold values. From our empirical study, a simple
linear loosening scheme is found to be very adaptive
and performed well. In this scheme, there is a fixed
number of threshold levels such that whenever no
more qualified merges remain, the values of the two
thresholds are updated using a linear interpolation
towards the baseline values (see Section III-D for
details). By default, we set the number of threshold
levels to the dataset dimensionalityd such that after
each loosening,dmin is reduced by 1. In general,
using a larger number of levels will lead to a
better accuracy but a longer execution time. We will
show in Section IV that the clustering accuracy is
insensitive to small changes to the number of levels.

D. The algorithm

With the core building blocks explained, we now
present the complete algorithm, which is described
by the pseudo codes in Table II.

At the beginning of the clustering process, each
object is a separate cluster. The two thresholdsdmin

and Rmin are set to their tightest values. For each
cluster, the dimensions that satisfy the threshold
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TABLE II

THE HARP ALGORITHM .

Algorithm HARP (k: target no. of clusters (default: 1))
1 For step := 0 to d− 1 do {
2 dmin := d− step
3 Rmin := 1− step/(d− 1)
4 Foreach clusterCi

5 SelectDim(Ci, Rmin)
6 BuildScoreCache(dmin, Rmin)
7 While cache is not empty{
8 // Ci1 andCi2 are the clusters involved in the
9 // best merge, which forms the new clusterCi3

10 Ci3 := Ci1 ∪ Ci2

11 SelectDimNew(Ci3 , Rmin)
12 UpdateScoreCache(Ci3 , dmin, Rmin)
13 If clusters remained =k
14 Goto 17
15 }
16 }
17 ReassignObjects()
End

requirements are selected. The merge score between
each pair of clusters is then calculated. All merges
that form a resulting cluster with less thandmin

selected dimensions are not allowed to perform.
The algorithm repeatedly performs the best merge

according to the merge scores of the qualified
merges. In order to efficiently determine the next
best merge, merge scores are stored in a cache. After
each merge, the scores related to the merged clusters
are removed from the cache, and the best scores of
the qualified merges that involve the new cluster
are inserted. The selected dimensions of the new
cluster are determined by its members according to
Rmin. Due to the definition ofR, if a dimension is
originally not selected by both merged clusters, it
must not be selected by the new cluster. But if a
dimension is originally selected by one or both of
the merging clusters, it may or may not be selected
by the new cluster.

Whenever the cache becomes empty, no more
qualified merges exist at the current threshold level.
The thresholds will be loosened linearly as ex-
plained before (lines 2-3 of Table II). Further rounds
of merging and threshold loosening are carried out
until a target number of clusters remain, or the
thresholds reach their baseline values and no more
merging is possible.

To further improve clustering accuracy, an op-
tional object reassignment step can be performed af-
ter the completion of the hierarchical part. TheMS

score between each clustered object and each cluster
is computed based on the final threshold values
when the hierarchical part ends. After computing
all the scores, each of the objects is assigned to
the cluster with the highestMS score. The process
repeats until convergence or a maximum number of
iterations is reached.

Finally, we describe the outlier handling mech-
anism of HARP. It is similar to the one used by
CURE [13] with two phases of outlier removal.
Phase one is performed when the number of clusters
remained reaches a fraction of the dataset size.
Clusters with very few objects are removed. Phase
two is performed near the end of clustering to
prevent the merge of different real clusters due to the
existence of noise clusters. As pointed out in [13],
the time to perform phase one outlier removal is
critical. Performing too early may remove many
non-outlier objects, while performing too late may
have some outliers already merged into clusters.
HARP performs phase one relatively earlier so that
most outliers are removed, possibly together with
some other objects. Before phase two starts, each
removed object is filled back to the most similar
cluster subject to the current threshold requirements.
Due to the thresholds, real outliers are unlikely to
be filled back. From experimental results, the fill
back process usually improves the accuracy.

E. Complexity analysis

Suppose each cache access (insertion or deletion
of all the merge scores that involve a cluster) takes
O(f(N)) time, it can be shown that the whole
algorithm takesO(N2d2 + Nf(N)) time [7]. We
implemented three kinds of cache structures: prior-
ity queue (similar to the one used in [14]), quad tree
and Conga line [16], withf(N) ranges fromN to
N log2 N .

There are many ways to improve the speed per-
formance of HARP. For two clusters to be qualified
for merging, the number of common dimensions
that pass the histogram-based validation must ex-
ceeddmin. By checking the maximum number of
such common dimensions of all cluster pairs, many
threshold levels can be skipped if they contain no
possible merges. This optimization is most useful
when the dimensionalities of the clusters are low rel-
ative to the dataset dimensionality. Similarly, when
determining the merge score between two clusters,
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TABLE III

DATA PARAMETERS OF THE SYNTHETIC DATASETS.

Parameter Default Values
Dataset size (N ) 500
Dataset dimensionality (d) 20
Number of clusters (k) 5
Cluster size (Ni) 15 to 25% ofN
Average cluster dimensionality (lreal) d

k
to 0.9d

Domain of dimensions ([minj , maxj ]) [0,1] to [0,10]
Local S.D. of relevant dimensions (σij) 3 to 5% of domain
Artificial data errors (e) 5%
Artificial outliers (o) 0%

the R∗ value of each dimension of the resulting
cluster is computed in turn. Once the number of
selected dimensions is confirmed to be lower than
dmin, theR∗ values of the remaining dimensions do
not need to be computed.

When the dataset size is very large, it is also
possible to perform clustering on a random sample
only. Upon completion, each unsampled object is
filled back to the most similar cluster subject to the
restriction of the final threshold values. Similarly,
when the dataset dimensionality is very high, a
constant number of threshold levels can be used
(line 2 of Table II), so that the quadratic term with
respect tod in the total time complexity becomes
linear. We will show in the next section that these
speedup methods are feasible in practice.

The space complexity of HARP isO(n) when
Conga line is used, andO(n2) when quad tree or
priority queue is used. Depending on the memory
available, HARP chooses the best cache structure to
use but produces identical clustering results.

IV. EXPERIMENTS

In this section we report various experimental re-
sults of HARP and some other clustering algorithms
in comparison. More results can be found in [7].

A. Datasets

1) Synthetic data:Table III lists the default pa-
rameters used in synthetic data generation.

When generating a dataset, the size of each
cluster and the domain of each dimension were
first determined randomly according to the data
parameters. Having different cluster sizes creates
different peak heights at the distributions, which
test the stability of the histogram-based validation
mechanism. The different domain sizes are to test

the effectiveness of the relevance index. Each cluster
then randomly picked its relevant dimensions, where
a single dimension could be relevant to multiple
clusters. Since dimensions that are irrelevant to
all clusters can be removed by feature selection
techniques, which are not the major concern of
the current paper, we made each dimension to be
relevant to at least one cluster.

For each relevant dimension of a cluster, the
local mean and standard deviation were chosen
randomly from the domain to construct a Gaussian
distribution. Each object in the cluster determined
whether to follow the signature according to the
data error ratee. This was to simulate experimental
and measurement errors. If an object was chosen
to follow the signature, a projected value would be
sampled from the Gaussian distribution. Otherwise,
and for all irrelevant dimensions, the values would
be sampled from a uniform distribution over the
whole domain.

2) Real data:Lymphoma: It is a gene expression
dataset used in studying distinct types of diffuse
large B-cell lymphoma (Figure 1 of [17]). It con-
tains 96 samples, each with 4026 expression values
of genes. The samples are categorized into 9 classes
according to the category of mRNA sample studied.
We clustered the samples with the genes as the input
dimensions, and used the class labels to evaluate the
clustering performance. Each selected dimension of
a cluster represents a gene that has similar expres-
sions in the member samples. If a cluster contains
mainly one type of tumor samples, the genes are the
potential signatures for identifying the presence of
the specific type of tumor.

Food: It contains the weight and 6 attributes
(Fat, Food Energy, Carbohydrate, Protein, Choles-
terol and Saturated Fat) of 961 food items2. We
followed [18] to divide the attribute values by the
weight, and standardize each column to have unit
standard deviation. Since the dataset contains no
class labels, we treat the clustering as an exploratory
task and report some interesting findings.

B. Comparing algorithms

To demonstrate the capability of HARP, we com-
pared it with various projected and non-projected

2We downloaded the dataset fromhttp://www.ntwrks.com/
˜mikev/chart1.html .
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algorithms. For the projected side, we chose PRO-
CLUS [5], ORCLUS [4] and FastDOC [2] as they
have reasonable worst case time and are able to
produce disjoint clusters, which makes it easy to
compare the clustering results. FastDOC creates
clusters one at a time. We used it to produce disjoint
clusters by removing the clustered objects before
forming a new cluster. After forming the target
number of clusters, the unclustered objects were
treated as outliers. For the non-projected camp,
we chose a simple agglomerative hierarchical algo-
rithm, two partitional algorithms CLARANS [8] and
KPrototype [19] (based on k-medoids and k-means
respectively), and CAST [20], a popular algorithm
for clustering high-dimensional gene expression
profiles. We believe our choice of algorithms covers
a wide spectrum of clustering approaches.

C. Other details

1) Algorithm parameters:In all experiments the
target number of clusters was set to the number
of real clusters. For each of the other parameters,
various reasonable values were tried (details can be
found in [7]). CAST and FastDOC produced the
desired number of clusters only at some specific
parameter values. All results that form fewer than
the desired number of clusters were discarded.

2) Execution:Each experiment was repeated five
times to avoid bias due to randomness (e.g. locations
of initial medoids). For each repeated run, only the
result that has the best algorithm-specific objective
score will be considered in the discussions below.

3) Evaluation criteria: We used the Adjusted
Rand Index (ARI) [21] as the performance metric
for clustering accuracy. It is based on the Rand
Index [22], with the expected index value also
taken into account. It measures how similar are the
partition of objects according to the real clusters (U)
and the partition in a clustering result (V). Denote
a, b, c andd as the number of object pairs that are
in the same cluster in both U and V, in the same
cluster in U but not V, in the same cluster in V but
not U, and in different clusters in both U and V
respectively, ARI is defined as follows:

ARI(U, V ) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(6)

The more similar are the two partitions (largera
andd, smallerb and c), the larger will be the ARI

value. When U and V are identical, the index value
will be one. When V is only as good as a random
partition, the index value will be zero.

We used precision and recall to evaluate how
similar are the selected dimensions and the real rel-
evant dimensions. For each cluster, precision is the
number of real relevant dimensions being selected
divided by the number of selected dimensions.
Recall is the number of real relevant dimensions
being selected divided by the actual number of
real relevant dimensions. The reported value of a
clustering result is the average of all the clusters.

4) Data preprocessing:We generated an “easy-
to-cluster” dataset withlreal=12 and o=0 to test
the importance of data preprocessing. We tested
the clustering accuracy of the projected algorithms
with and without standardizing the values of each
dimension, using correct user parameter values. The
results (see [7] for details) show that with the global
variance taking into account in the relevance index,
the performance of HARP is invariant to the stan-
dardization process. For all the other methods, the
clustering accuracy was improved by standardiza-
tion. For fair comparisons, all the synthetic datasets
used in the coming sections were standardized.

5) Outlier handling: From some preliminary ex-
periments, we noticed that FastDOC and PROCLUS
tend to discard a large amount of outliers even the
dataset contains no or few artificial outliers. In order
to give a fair comparison of the clustering results,
except otherwise specified, the synthetic datasets
used in the coming experiments contain no artificial
outliers, and the outlier removal options of all algo-
rithms were disabled. For CAST and FastDOC, the
unclustered objects were still discarded as outliers,
and we accept only results with discarding rates
not more than 40%. To show the noise-immunity of
HARP, there will be a separate subsection dedicated
to experiments on noisy data.

D. Results on synthetic data

1) Clustering accuracy:The first set of experi-
ments concerns how the clustering accuracy is af-
fected by cluster dimensionalitylreal. We generated
eight datasets withlreal ranging from 4 to 18. For
clarity, we present the results in three different
charts in Figure 3. In the charts, and in the other
figures to be presented later, a line labeled “best”
and “average” represents the result with the highest
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Fig. 3. Clustering accuracy with different cluster dimensionalities.

ARI values and the average result after trying all the
parameter values respectively. Since CLARANS,
HARP, Hierarchical and KPrototype used only one
set of parameter values, only one line is presented
for each of them.

Figure 3a shows the best results (with the highest
ARI values) of the algorithms. Most algorithms
were highly accurate at largelreal values, but for
lreal values lower than 50% ofd, the performance
difference between different algorithms became ap-
parent. HARP got the highest ARI values among all
algorithms on all datasets, and remained extremely
accurate even each cluster had 80% of the dimen-
sions irrelevant to them. The results of ORCLUS
reported in [4] are better than the results observed in
our experiments, which is likely caused by the small
sizes of our synthetic datasets. ORCLUS works best
on large datasets that contain sufficient values for
performing PCA. In comparison, its performance on
small datasets is less competitive. FastDOC contin-
ued to discard a large amount of non-outlier objects,
with an average discarding rate of 26.3%, which
equals the size of one to two complete clusters.

In general the projected algorithms outperformed
the non-projected ones at smalllreal values, but
some good results were due to the correct input
of parameter values. Figure 3b compares the best
results of FastDOC, ORCLUS and PROCLUS when
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Fig. 4. Accuracy of the selected dimensions.

correct parameter values were used with their aver-
age results when a set of linearly chosen parameter
inputs were used. The average results have much
lower ARI values than the best results, which means
in reality if the correct parameter values are un-
known, the optimal results can hardly be obtained.
Figure 3c shows the typical fluctuation of accuracy
of PROCLUS and ORCLUS with various parameter
inputs, taken from the results on the dataset with
lreal=8. Both algorithms achieved their peak perfor-
mance when correct inputs were supplied, but the
error rates raised as the inputs moved away from
the correct values. In comparison, the accuracy of
HARP is independent of user inputs.

From Figure 3b, it is also noted that PROCLUS
and ORCLUS did not perform well whenlreal is
small even correct parameter values were used. This
is due to the formation of incorrect tentative clus-
ters caused by object assignments that depend on
distance calculations in the input space. In contrast,
by allowing only merges with maximum number
of selected dimensions, HARP was able to prevent
from forming incorrect tentative clusters.

Next we investigate the selected dimensions
of the projected clustering algorithms. Figures 4a
and 4b show the average precision and recall values
of the selected dimensions of the results produced
by FastDOC, HARP and PROCLUS.

When lreal is large, HARP tended to be con-
servative in dimension selection as reflected by
the high precision and relatively low recall values.
This means HARP deliberately avoided selecting
irrelevant dimensions when the selected ones were
enough for identifying the cluster members cor-
rectly. However, whenlreal is small, HARP tried
to include all relevant dimensions in order not to
miss any useful information, with the expense of
also selecting some irrelevant dimensions. This is
not a serious problem as including a few irrele-
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Fig. 5. Clustering results on imperfect data.

vant dimensions has only a moderate effect to the
clustering accuracy if the signatures at the relevant
dimensions are clear enough to identify the cluster
members, while missing a single relevant dimension
may mean missing a substantial proportion of in-
formation. If the accuracy of selected dimensions is
critical to an application, a post-processing step can
be carried out to rank all the dimensions of each
cluster based on theR values, and filter out the
unwanted dimensions according to the application-
specific needs. Our argument is supported by the
excellent accuracy of HARP at alllreal values.

The best results of FastDOC are characterized by
excellent precision and fair recall values over the
whole range oflreal values. This means it tends to
be parsimonious in dimension selection, which can
be a great problem whenlreal is small. The behavior
of the best results of PROCLUS is similar to HARP,
but is relatively less stable. On the other hand, as
expected, the average results of PROCLUS are not
satisfactory except at very largelreal values.

2) Imperfect datasets:Although the above ex-
periments show that HARP is highly accurate, the
datasets being used are too ideal with no outliers,
low error rates and clear signatures. In the coming
experiments we demonstrate the influence of these
data parameters on the clustering accuracy. We fixed
lreal to 6 (30% of d) and generated three sets of
data with increasingo, e and σij respectively. We
tested the performance of HARP, using PROCLUS
and ORCLUS (with correct parameter values) as
reference. The results are shown in Figure 5.

Figures 5a shows the results on the datasets with
artificial outliers. From the figure, the performance
of HARP was less sensitive to outliers than the other
two algorithms, and the histogram-based validation
mechanism was effective in improving the accuracy
of HARP. In comparison, ORCLUS and PROCLUS

had unsatisfactory performance. ORCLUS appears
to be very sensitive to outliers, which may due to
the fact that in late iterations it uses the centroids
(instead of medoids) as cluster seeds. When the
clustering accuracy is low, each cluster consists of
objects from many different real clusters and the
centroids will contain a mixture of their signatures.
As a result, the centroids will be similar to each
other, but dissimilar to any data objects, which ruin
the outlier removal mechanism of ORCLUS.

Figure 5b shows the results with increasing
amount of data errors. It shows that the accuracies
of all three algorithms went down as more errors
were introduced, but HARP only had a mild de-
terioration. Similar results are observed when the
cluster signatures became less concentrated (figures
can be found in [7]).

E. Scalability experiments

In this section we study the scalability of HARP
with increasing dataset size and dimensionality. We
tested the performance of HARP on two sets of
data, the first withN increasing from 1000 to
500000 (using Conga line as cache structure), and
the second withd increasing from 100 to 500 and
average cluster dimensionality kept at 30% ofd.

The results with increasing dataset size are shown
in Figure 6a, which confirms that the actual execu-
tion time was bounded by the theoretic time com-
plexity. For medium-sized datasets (N ≈ 10000),
the execution time was usually better than ORCLUS
and FastDOC, and comparable to PROCLUS when
the time used in repeated runs is also included. Part
b shows the relative execution time and accuracy
when the sample-based speedup technique described
in Section III-E was applied to the dataset with
10000 objects. For reasonable sample sizes, the
execution time was much improved with only a little
impact on the accuracy.

The results with increasing dataset dimensional-
ity are similar (figures can be found in [7]). The
execution time was shown to be sub-quadratic with
respect tod. When HARP was speeded up by
using fewer threshold levels, the execution time
was greatly reduced, but the clustering accuracy
remained excellent.

F. Results on real data

For the lymphoma data, we used HARP and
PROCLUS as the representatives of projected clus-
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tering algorithms. HARP got an ARI value of 0.75,
which is higher than the values obtained by all other
algorithms. The samples of different types were well
separated into different clusters, and most samples
(43 out of 46) of the major class (DLBCL) were put
into a single cluster. The clusters of HARP have
2014 to 3515 selected dimensions, corresponding
to 50% to 87% of all dimensions. The selected
dimensions display some biological significance. In
Figure 2 of [17], some genes are highlighted as the
signatures of some sample types or biological pro-
cess. We ranked the selected genes of each cluster
according to theirR values, and found that a large
number of relevant signature genes were selected by
the clusters with very high ranking andR values.
For example, a subcluster of the large DLBCL
cluster has all signature genes in the proliferation
region selected. Among the 3347 selected genes of
it, all the signature genes in the region are within
the top 700 ranked genes. About 70% of them are
even within the top 75, withR values above 0.83.

For the food data, we used HARP to produce
twenty clusters. Some interesting clusters can be
found in [7]. For example, one of them contains all
twelve margarine items in the dataset. Three of the
dimensions have high relevance index values and
were selected by HARP. However, the index values
of the other three dimensions are low and they were
therefore not selected. This means the margarine
items are close in the selected three-dimensional
subspace, but may not be close in the input space.
We verified this by performing ten rounds of KPro-
totype on the data. In all cases, the twelve items
were distributed to two or more clusters, which
suggests that the non-projected clustering algorithm
is unable to produce the same interesting cluster.

V. D ISCUSSIONS AND FUTURE WORK

The dynamic threshold loosening mechanism of
HARP is shown to be successful in eliminating the
reliance on user parameters. We believe the concept
of dynamic parameter tuning has a great potential
value in problems where the algorithms usually rely
on user parameters.

The experimental results also reveal that projected
clustering is meaningful only when the dimension-
alities of the clusters are well below the dataset
dimensionality. We recommend further studies on
projected clustering to focus on datasets withlreal

not more than 30% ofd. In some gene expression
datasets, the number of relevant genes of each func-
tion group can be lower than 10% of the total num-
ber of genes. Most projected clustering algorithms
(including HARP) may not perform well, while the
subspace clustering approaches (such as [10]) intro-
duced in Section II may run indefinitely long since
the absolute value oflreal can be very high (e.g.
100). Further improvements of projected clustering
algorithms are called for.

It is also interesting to see if HARP can be
modified to produce pattern-based and non-disjoint
clusters, which are more appropriate in some situa-
tions. A preliminary study can be found in [7].

VI. CONCLUSIONS

In this paper, we analyzed the major challenges
of the projected clustering problem, and proposed
a new algorithm HARP that does not depend on
user inputs in determining the relevant dimensions
of clusters. It makes use of the relevance index,
histogram-based validation and dynamic threshold
loosening to adaptively adjust the merging require-
ments according to the clustering status. Experimen-
tal results on synthetic and real data suggest that
HARP has a higher accuracy and usability than the
projected and non-projected algorithms being com-
pared, and it remains highly accurate when handling
noisy data. The interesting clusters discovered in the
lymphoma and food data suggest that HARP could
be a practical tool for real applications.
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