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HARP: A Practical Projected Clustering Algorithm

Kevin Y. Yip, David W. CheungMember, IEEEand Michael K. Ng

Abstract—In high-dimensional data, clusters can exist
in subspaces that hide themselves from traditional cluster- =
ing methods. A number of algorithms have been proposed
to identify such projected clusters, but most of them rely on
some user parameters to guide the clustering process. The °
clustering accuracy can be seriously degraded if incorrect = * ‘
values are used. Unfortunately, in real situations it is | ©
rarely possible for users to supply the parameter values s~
accurately, which causes practical difficulties in applying BN ; |
these algorithms to real data. In this paper, we analyze
the major challenges of projected clustering and suggest
why these algorithms need to depend heavily on user
parameters. Based on the analysis, we propose a new
algorithm that exploits the clustering status to adjust the Fig. 1. An example of projected clusters.
internal thresholds dynamically without the assistance of
user parameters. According to the results of extensive
experiments on real and synthetic data, the new method of attention from various communities. In projected
has excellerlt accuracy and usability. It outperformed the Clustering’ clusters exist in Subspaces of the input
other algorithms even when correct parameter values space defined by the dimensiém the dataset. The

were artificially supplied to them. The encouraging results similarity between different members of a cluster
suggest that projected clustering can be a practical tool y . ) o
for various kinds of real applications. can only be recognized in the specific subspace. A
dataset can contain a number of projected clusters,

each forms in a possibly distinct subspace.

8

(a) A set of 3D objects. (b) 2-D projected clusters.

Index Terms— Data mining, Mining methods and algo-
rithms, Clustering, Bioinformatics.

. INTRODUCTION A. Projected clusters

Data mining is a process to discover unobservedTo illustrate the idea of projected clusters, con-
object relationships. Clustering is one of the mosider the objects in Figure 1a. Although the distribu-
well studied techniques, which concerns the partion of objects suggests some underlying structures,
tioning of similar objects into clusters such that okt is hard to clearly define the clusters. The hidden
jects in the same cluster share some unique prop&tationships between the objects are revealed in
ties. Although some clustering algorithms have be@tigure 1b, where the members of different clusters
proposed for thirty years [1], clustering remainare given different shapes. By projecting the objects
a hot research topic and new algorithms emergato appropriate subspaces (see the shadows on the
from time to time. This is mainly due to the everaxis planes), the cluster structures become apparent.
increasing variety, complexity and size of datasetShould the corresponding subspaces of each cluster
The need for faster and more specialized algorithrbe not identified, the circled objects in Figure 1b
grows with the production of huge amount of dataould very likely be wrongly grouped into the same
with diverse data characteristics. cluster due to their closeness in the 3D input space.

In recent years, a special branch of clustering Projected clusters can appear in various kinds of
called projected clustering has been receiving a Igta. Projected clustering has been successful in a
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Section 1V that it outperforms traditional clusteringnter-cluster similarity is minimized. This is very
methods on a gene expression dataset for cansinilar to the traditional (non-projected) clustering
study and a food nutrition dataset. problem [6], but is more general in that it allows
For the sake of discussion, let us define a numbsach cluster to have only a subset of dimensions
of terms and notations. Given a dataset wifhob- being relevant to. In this paper we assume clusters
jects and a sét” of d dimensions, a projected clusteare disjoint, i.e., each object belongs either to one
C; containsN; member objects, and is defined in aluster or the set of outliers.
subspace formed by the sgt of d; dimensionsd; We assume that there is a setreél clustersthat
is referred to as th&limensionalityof cluster C;. best matches the domain knowledge. The relevant
As in most other studies (e.g. [2], [5]), we requirdimensions of the real clusters are called thal
eachV; to be a subset of as the clustering resultsrelevant dimensionof them. Although the real
are easier to interpret. We will call the dimensiondusters are rarely known to users, we will assume
in V; therelevant dimensionsef C;, and the ones in the existence of them for the sake of discussion. As
V —V; theirrelevant dimensionsf it. The subspace clustering is an unsupervised-learning problem, all
formed by the two sets of dimensions will be calledlustering algorithms studied in this paper do not
therelevant subspaceandirrelevant subspacef C; make use of the information about real clusters.
respectively. A dimension can be relevant to zero, In the remaining of this paper, the teraluster
one, or more clusters. alone will mean a cluster produced by a clustering
A dimension is relevant to a cluster if it helpsilgorithm. The relevant dimensions of a cluster de-
distinguish the members of the cluster from othéermined by an algorithm will be called itelected
objects. In other words, in the relevant subspace @imensionsand the subspace formed by the dimen-
a cluster, the members of the cluster are similar $ons theselected subspac# cluster iscorrectif it
each other but dissimilar from other objects. In thigontains objects all from the same real cluster, and
paper we assume object similarity is measured byrgorrect otherwise.
distance metric, such as Euclidean distance. Whern Figure 1, cluster 1 has a perfect signature
all objects are projected onto a relevant dimensi@hong every relevant dimension in that no objects
of a cluster, the projections of its members wilh other clusters are projected onto the signature
be concentrated on a small range of values thange. Selecting a single relevant dimension (either
contains few or no projections of other objects. Theor y) for the cluster is enough to unambiguously
value ranges on the various relevant dimensions ddentify all its members. In real datasets, due to the
called the “signature” of the cluster. For examplgresence of errors, it is usually needed to select
in Figure 1, a possible signature of cluster 1 ultiple relevant dimensions in order to identify
the axis-parallel rectangle on the x-y plane withll the members correctly. A clustering algorithm
extreme points(6,2) and (7,3). If the projection may assign aelevancevalue to each dimension of
of an arbitrary object on the x-y plane falls int& cluster to indicate how well it helps identify the
this region, it is likely to be a member of clustemembers of the cluster.
1. Notice that we cannot simply conclude that the There are two major challenges in projected
objectis a member of cluster 1 since in real datasetfustering that make it distinctive from the tradi-
errors occur frequently. A cluster member mafjonal clustering problem. The first challenge is the
not abide by the signature of the cluster on sonsgnultaneous determination of both cluster mem-
relevant dimensions (e.g. a member of cluster 1 mhgrs and selected dimensions. Cluster members are
have the coordinate$, 8, 3) where the y-coordinatedetermined by calculating object distances in the
does not agree with the signature), or a non-memis@lected subspace, while the selected dimensions
may have part of the signature by chance. are determined by measuring the projected distances
between cluster members. One common approach
to tackling this chicken-and-egg problem is to form
some tentative clusters according to some heuristics,
The projected clustering problem is to identifgletermine their selected dimensions, and then refine
a set of clustersand their relevant dimensionsthe cluster members based on the selected dimen-
such that intra-cluster similarity is maximized whilesions. The heuristics being used are critical to the

B. Projected clustering
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effectiveness of the algorithm. For instance, sone¢ a cluster are fixed, raising the threshold will
existing algorithms make use of object distanc@sobably reduce the number of dimensions qualified
in the input space to predict the members of far selection. Again, a simple way to deal with the
cluster, which could be quite inaccurate shoulgroblem is to combine the criteria into a single
the dimensionalities of the real clusters are smaitore, and let users to decide the relative importance
relative to the dataset dimensionality. of each criterion, which would also introduce a
The second challenge is the evaluation of clustesability problem.
quality, which is in turn related to the determination In summary, tentative clusters formation, clusters
of the dimensionality of each cluster. Traditionallyevaluation and the determination of cluster dimen-
objective functions are used to evaluate the qualijonalities are the major difficulties of projected
of clusters. For example, k-means [1] assumes tlghlistering. In the next section, we will study in
each cluster is composed of objects distributefore details some proposed projected clustering
closely around the centroid. The objective of kalgorithms and discuss their potential weaknesses.
means is thus to minimize the average squarid Section Il we will introduce a new algorithm
distance between each object and the centroid thht 1) avoids the formation of incorrect clusters by
its cluster. Some projected clustering algorithms [4dJlowing only the clusters with the highest chance
[5] generalize the function for projected clusteringf being correct to be formed, and 2) determines the
by considering only the selected dimensions in didimensionality of clusters by dynamically adjusting
tance calculations. A weakness of this generalizéd internal thresholds without relying on user inputs.
function is that a better objective score can always
be obtained by selecting fewer dimensions [7]. This
could be a problem if the cluster signatures are not
perfect, when each cluster will be tempted to selectThe partitional approach PROCLUS [5] is based
only one best dimension, which is not enough tn the k-medoids method [8]. As in traditional k-
identify all member objects correctly. medoids methods, some objects are initially chosen
Some algorithms require users to supply the aas the medoids. But before assigning every object
erage cluster dimensionality as a constraint on tirethe dataset to the nearest medoid, each medoid
number of selected dimensions. This is a simpig first assigned a set of neighboring objects that
solution to the problem, but it in turn creates are close to it in the input space to form a tentative
usability problem as users are rarely able to suppijuster. For each tentative cluster, all dimensions are
the value accurately in real situations. sorted according to the average distance between
Another solution is to design a new objectivéhe projections of the medoid and the neighboring
function for projected clustering. Summarizing thebjects. On averagé dimensions with the small-
proposals of some previous studies [2], [4], [5], est average distances are selected as the relevant
projected cluster is likely to be correct if dimensions for each cluster, wheleis a user
1) Its selected dimensions have high relevanc@arameter. Normal object assignment then resumes,
2) It has a large number of selected dimensiortsut the distance between an object and a medoid
3) It contains a large number of objects. is computed using only the selected dimensions.
The reason for the first criterion is trivial, andVedoids with too few assigned objects are replaced
the other two criteria ensure that the high relevanby some other objects to start a new iteration.
of the selected dimensions is not due to randomThe user parametdr may introduce a usability
chance [7]. It is favorable for a cluster to haveroblem since its correct value is hard to determine.
all three properties, but in reality optimizing onénother potential problem arises when the real
property would usually sacrifice the other. Suppostusters have few relevant dimensions, in which case
a dimension is selected for a cluster if the averag#dferent members of a cluster may not be close to
distance between the projected values is beloweach other in the full input space. As a result, when
certain threshold, then when the threshold is fixed,member of a real cluster is chosen as a medoid,
adding more objects to a cluster will probably dehe neighboring objects assigned to it may not
crease the number of relevant dimensions qualifiedme from the same real cluster. Subsequently, the
for selection. In the same manner, if the membedémensions selected would not be the real relevant

Il. RELATED WORK
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dimensions and the resulting cluster would be mixgutojected clustering algorithm can be found in [7].
of objects from different real clusters. There are also two computational problems
Another partitional algorithm ORCLUS [4] wasclosely related to projected clustering: subspace
proposed to improve PROCLUS. According to thelustering [10] and biclustering [11]. The goal of the
experimental results reported in [4], it is moréormer problem is to search for all high-density re-
accurate and stable than PROCLUS. Nevertheleg®ns in all subspaces (as opposed to returning only
it still relies on user-supplied values in deciding tha small set of best clusters in projected clustering),
number of dimensions to select for each cluster. and that of the latter is to search for possibly non-
In the hypercube approach DOC and its variadisjoint data submatrices that optimize certain (usu-
FastDOC [2], each cluster is defined as a hypercuaky pattern-based) objective functions. Since the
with width 2w, wherew is a user parameter. Themain focus of this paper is on projected clustering,
clusters are formed one after another. To find vee refer interested readers to the thorough survey
cluster, a pivot point is randomly chosen as thef the three problems in [7].
cluster center and a small set of objects is randomlyln the next section, we will introduce a new
sampled to form a tentative cluster around thegorithm HARP (a Hierarchical approach with
pivot point. A dimension is selected if and only ifAutomatic Relevant dimension selection for Pro-
the distance between the projected values of evgegted clustering), which is based on the traditional
sample and the pivot point on the dimension is regglomerative hierarchical approach [12]. At the
more tharnw. The tentative cluster is thus boundetleginning each object is treated as a cluster, which
by a hypercube with widtl2w. All objects in the are subsequently merged to form larger clusters.
dataset falling into the hypercube are grouped The other stream of hierarchical algorithms is the
form a candidate cluster. More random samples adiisive methods, which put all objects into a single
pivot points are then tried to form more candidateluster at the beginning, and iteratively divide a
clusters, and a specially designed function is useddiaster into smaller clusters. Some classical hierar-
evaluate the quality of them. The candidate clustehical algorithms can be found in [1], [12]. A brief
with the best evaluation score is accepted, and timroduction to some important concepts of hierar-
whole process repeats to find other clusters. chical algorithms, such as linkage and object/cluster
As with PROCLUS and ORCLUS, the selectedimilarity can be found in [7]. Some recent de-
dimensions of DOC and FastDOC are determin@glopments of hierarchical clustering algorithms on
by a user parameter. In addition, they also restrisandling irregular-shaped clusters and categorical
each cluster to be a hypercube with equal widdttributes can be found in [13] and [14] respectively.
along all relevant dimensions, which is unlikely to
be true in real data. Tentative clusters are formed by . THE NEW APPROACH
random sampling, which avoids direct distance cal- _ _
culations in the input space. However, the numb® Relevance index, cluster quality and merge score
of tentative clusters required to try can become soWe first define a function for measuring the rele-
large that seriously affects the speed performanceance of a dimension to a cluster. In many previous
There are some other proposed algorithms thetidies [2], [4], [5], relevance is directly measured
determine object similarity based on the likelinedsy the distance between projected values. This may
of the rise and fall patterns of projected valuasot be appropriate if the input dimensions have
across the relevant dimensions instead of the abfferent ranges of values. Consider an example
solute distance between the objects in the relevaatation shown in Table I, where objects 1 and 2
subspace. We refer to this problempegtern-based form a real cluster. If relevance is measured by
as opposed to th@istance-basedlustering problem the average within-cluster distance, dimension D is
studied in this paper. Some pattern-based methadsst relevant to the cluster as the within-cluster
include pCluster [3] and MaPle [9]. The patterndistance between projected values is smallest along
based approach has special values in some applitee dimension. Similarly, if the measurement is
tion domains such as bioinformatics and time-seribased on average between-cluster distance, dimen-
data analysis. An interesting proposal for perforngion C is most relevant to the cluster. Clearly, both
ing pattern-based clustering using a distance-baggdposals are problematic as they do not satisfy



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

TABLE |

all and can be safely removed before the clustering
AN EXAMPLE ILLUSTRATING THE IDEA OF RELEVANCE.

process. Also, if a cluster contains only one object,

Dim. A Dim. B Dim.C Dim. D the index values of all dimensions are set to one.
Object 1 1 0.2 10 0.72 In Table I, theR values of the four dimensions for
Object 2 2 0.3 30 0.70 he ol h . bi 1 and 2 0.97
Object 3 8 10 20 073 the cluster that contains o J_ects an are 0.97,
Object 4 9 0.9 40 0.71 0.97, -0.2 and -0.2 respectively, which match the

intuitive relevance of the dimensions.

Based on the relevance index, the quality of a
the fundamental property of relevant dimensionslusterC; can be measured as the sum of the index
helping the distinguishing of cluster members. Igalues of all the selected dimensions:
comparison, dimensions A and B are actually more
relevant to the cluster. Qi= > Ri. (2

It is observed that for a dimension to be relevant vi€Vi

to a cluster, not only should the projections of thﬁ'] general, the more selected dimensions a cluster

cluster members be close to each other, the cIoWa-s and the larger are their respectitevalues
ness should also be uncommon among the distaraq ’ ’

b h o f bi ™ & larger will be the value of). We will discuss
etween the projections of any two objects. Thig,, yARP determines the relevant dimensions of
can be captured by a comparison of the varian

&&ch cluster later. At this point it can be assumed
within the cluster (thdocal variancg and in the P

) that each cluster has a reasonable set of selected
whole dataset (thegylobal varianc. Suppose the dimensions

variance of projected values on dimensiop in
cluster C; and in the whole dataset ar@?j and
0—]2. respectively, theelevance indexf v; for C; is
defined as follows:

Similarly, a score can be defined to evaluate the
merge of two clusters. Basically, if two clusters can
be merged to form a cluster with high quality, the

merge is a potentially good one, i.e., the two clusters
0-7;2j probably contain objects from the same real cluster.

Rij=1- -2 1) : .
o2 However, in case the two merging clusters have a

J
. . . large size difference, an unfavorable situation called
The index gives a high value when the Iocqﬁutual disagreementan occur. Consider a large

var_iance is small compa_red to the global V.aria.anIUSter with a thousand objects and a small one
This refers to the situation where the projections.., only five objects. If they are merged to form
of the cluster members on the dimension are Clo%e’new cluster, the mean and variance of projected
and the closeness is not due to a small averaifiues will highly resemble the original values of

distance bet\_Neen _the prolc_acted va_lues in the Wh%ee large cluster, which will dominate the choice
dataset. A dimension receives an index value clogle the dimensions to be selected. If a dimension

to the maximum valge (one) if the Iocql variance Iy originally selected by the large cluster, it will
extremely small, which means the projections for obably be selected by the new cluster also no

an eﬁcellegtlt S|gn?tu|re 1;061 |d|entn|°y|ng_ the .C|UStI atter the projected values of the small cluster
members. Alternatively, It the local variance 1S only o ¢15se to those of the large cluster or not. The

as large as the global variance, the dimension wi sulting cluster can have a high score even the

[)Z?el}?ﬁeigr I(;]i%eexn;/iglﬁze?efctzig;qa-lr_lglsa;;ggliztst\ﬁo clusters have a strong mutual disagreement on
: 9 the signatures of the resulting cluster.

e e vt (3 To cope wilh this problem we modiy the el
P J ' ance index to take into account the mutual dis-

dimension should therefore not be selected. We will . - -+ ctfact Suppogg, is the resulting clus-
- 3

discuss later how this baseline is used to define .
stopping criterion of HARP. ter formed by mergingC;, and C;,, the mutual-

To prevent the index from being undefined .disagreement-sensitive relevance index (gf on

n. . . .
A 'almensmnvj is defined as follows:
some degenerating situations, we assume there does

not exist any dimension with zero global variance. i} Riyjiis + Risliy
If such a dimension does exist, it is not useful at Riy; = 9 3)
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i, ; andp;,; are the mean projected values on o Projected value
of the two clusters respectively. The numerator of
the second term ak;,;;, is the average squared diS‘Fig. 2. A histogram built from the distribution of projected values
tance between the projected value€fonv; from of a typical dimension that is relevant to some real clusters.
the mean projected value @f;,. R;,;;, is defined
similarly. The penalty term(yu;,; — wi,;)* ensures
that the two clusters agree on the resulting signatuséore. However, it is possible to utilize tipoten-
When mutual disagreement occurs, the penalty tefi@l cluster size, which can be obtained from the
will have a large value and the relevance inde¥stribution of projected values. Figure 2 shows the
value will be attenuated. On the other hand, if tH&istogram built from such a distribution of a typical
two mean values are equal, the relevance inddbnension that is relevant to some real clusters.
will depend only on the local variance of the twd he peaks correspond to the signatures of the real
clusters. The originaR index is used to determineclusters. The base level at the troughs is likely due to

>
w

Rijjii, = 11—

Frequency
I
[

- 1—

cd

the quality of a cluster, while the modified indéX

random values. Suppose a cluster contains members

is used to determine the merge score between tWih projected values within the interval, b, it has

clusters. Whert;, andC;, are merged to fornd’;,,
the merge score is as follows:

a high potential to be merged with other clusters
to become a cluster with a significant size and a
high concentration of projected values around the

MS(C;,, Cy,) la, b] region. On the other hand, if a cluster contains
- Z R, members with projected values within the interval
v; €V [c,d], although the cluster may receive a high
Riyjlis + Risjlin value at the dimension, the cluster is unable to keep
= > 5 the high R value if it is to grow to a significant
v €Via size. The corresponding value should therefore
_ Z 1_ Jizlj + 01'22;' + 2(ptij — /~Lz‘2j)2.(5) be invalidated in order to prevent more objects to
oreVi, o7 be attracted to the cluster by the fake signature.

Based on the observation, a histogram-based val-
idation mechanism is developed to avoid the forma-
tion of incorrect clusters due to the above problem.

The M S function concerns both the quality and’he idea is that if a dimension is relevant to a
number of selected dimensions. As discussed dhuster, the corresponding histogram should contain
Section 1-B, a third criterion for evaluating clustea peak around the signature values (see regions A
quality is the cluster size. Suppose there is a(éetand B in Figure 2). The width and height of the peak
of objects all belong to real clusters with dimensiodepend on the properties of the cluster, but provided
v; being irrelevant to them. If the size 6f is small, the cluster has a significant size, the peak should
it is common to find the objects if' being close exceed the random noise level, which corresponds to
to each other along; by chance. IfC is large, the mean frequency in case of a uniform distribution
the chance for the same phenomenon to occur(shown by the dotted line). Clusters covered by
small. Looking in another way, if a cluster has hins that stay below the noise level are statistically
high relevance index value at a dimension, the mareignificant (region C), and their relevance index
objects the cluster contains, the less likely the higlalues for the dimension will be rejected.
index value is merely by chance. The validation mechanism contains two steps.

Since HARRP is a hierarchical algorithm with eackirst, the Kolmogorov-Smirnov goodness of fit
initial cluster containing a single object, it is notest [15] is used to remove dimensions that are
meaningful to incorporate cluster size into the merdigely irrelevant to all clusters, i.e., the dimensions

B. Validation of similarity scores
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whose distributions are essentially uniform. Eadfusters grow bigger in size. The projections of the
remaining dimension is expected to be relevant etuster members on the real relevant dimensions
at least one cluster. If a clust&r; has meary;; remain close to each other, but the chance of having
and varianceal?j at dimensionv;, we check the similar closeness of projections on other dimensions
mean frequency of the bins covering the rangiops, so as their relevance index values. This allows
[maz(p;; — 205, ming;), min(u;; + 20,5, max;;)], the real relevant dimensions to be differentiated
wheremin;; andmazx;; are the minimum and max-from the irrelevant ones, which in turn ensures the
imum projected values of the members(@fonv;. formation of correct clusters.
The use of a 4-standard deviation range covers 95%n order to guarantee the quality of clusters, the
of the projected values if they follow a Gaussiatwo thresholds are associated with baseline values
distribution and ignore some abnormalities, whilsuch that when the baselines are reached, no further
min;; andmax;; refine the boundaries of the rangéosening is allowed. As mentioned in Section IlI-A,
for non-Gaussian cases. When selecting the relevantegativeR? value means that a dimension is very
dimensions of a cluster, if the mean frequency ailikely to be relevant to a cluster. The baseline of
the bins is below the mean of all the bing;; will R, is thus set to zero. Fat,,;,, the baseline is set
be set to zero. When calculating'S between two to one, which is the minimum value for a cluster to
clustersC;, andC,,, if either R; ; or R,,; is set to be defined as a projected cluster. We will see later
zero by the validation mechanism; will make a that the HARP algorithm allows users to specify
zero contribution to thel/S score. An empirical an optional target number of clusters. According
evaluation of the effectiveness of the validatioto our experience, if such a value is specified,
mechanism will be given in Section IV-D.2. the algorithm usually finishes the clustering process
well before the thresholds reach their baselines. The
clusters produced thus contain selected dimensions
with R values much better than that of a random

When we introduced thé/S function in Sec- set of projected values.
tion IlI-A we assumed that there is a way to There are many possible ways to loosen the
determine the relevant dimensions of each clustgireshold values. From our empirical study, a simple
In this section we discuss how it is made possibl@ear loosening scheme is found to be very adaptive
by the dynamic threshold loosening mechanism. and performed well. In this scheme, there is a fixed

As discussed before, a cluster is likely to baumber of threshold levels such that whenever no
correct if it contains a large number of selecteghore qualified merges remain, the values of the two
dimensions, and the selected dimensions have highesholds are updated using a linear interpolation
relevance index values. This means merges thalvards the baseline values (see Section 1lI-D for
form resulting clusters with both properties shouldetails). By default, we set the number of threshold
be performed earlier. This is achieved by two irlevels to the dataset dimensionalitysuch that after
ternal thresholds?,,;, andd,,;,. Two clusters are each looseningd,.;, is reduced by 1. In general,
allowed to be merged if and only if the resultingising a larger number of levels will lead to a
cluster hasd,,;,, or more selected dimensions, anfetter accuracy but a longer execution time. We will
a dimensiory; is selected for a potential clustel, show in Section IV that the clustering accuracy is
if and only if R}, > R..,. At any time, the two insensitive to small changes to the number of levels.
thresholds define a set of allowed merges where the
actual merging order within the set is determined _
by the M S scores. D. The algorithm

At the beginning, R,.;, and d,,;,, are initial- With the core building blocks explained, we now
ized to the tightest (i.e., highest) values 1 aihd present the complete algorithm, which is described
(dataset dimensionality) respectively. All allowetby the pseudo codes in Table II.
merges produce clusters that contain identical ob-At the beginning of the clustering process, each
jects, which must be correct. Whenever all qualifieobject is a separate cluster. The two threshalgds
merges have been performed, the thresholds vald R,,;, are set to their tightest values. For each
be slightly loosened. As clustering proceeds, tluduster, the dimensions that satisfy the threshold

C. Dynamic threshold loosening
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TABLE I

score between each clustered object and each cluster
THE HARP ALGORITHM.

is computed based on the final threshold values
when the hierarchical part ends. After computing

Algorithm HABP (k: target no. of clusters (default: 1)) all the scores, each of the objects is assigned to
% Foéffiip ;':_do_tosfe; tdod the cluster with the highest/.S score. The process

3 Rumin =1 — step/(d—1) repeats until convergence or a maximum number of
g Fogee"’l‘gzts'llrfg@R 0 iterations is reached.

6  BuildScoreCachel.s. Romin) Finally, we describe the outlier handling mech-
7 While cache is not empty anism of HARP. It is similar to the one used by
8 II'Cy, and Ci, are the clusters involved in the CURE [13] with two phases of outlier removal.
20 /ét:eit g’i‘frﬂe@?h'm forms the new clus@s Phase one is performed when the number of clusters
11 SelectDimNeW(i,, Rumin) remained reaches a fraction of the dataset size.
ﬁ #%‘I’L?Stfesrgfeenf;fe@d&# dmin, Romin) Clusters with very few objects are removed. Phase
14 Goto 17 two is performed near the end of clustering to
15 } prevent the merge of different real clusters due to the
i? }éeassignotajects() existence of noise clusters. As pointed out in [13],
End the time to perform phase one outlier removal is

critical. Performing too early may remove many
non-outlier objects, while performing too late may
have some outliers already merged into clusters.
requirements are selected. The merge score betwe{RP performs phase one relatively earlier so that
each pair of clusters is then calculated. All mergegost outliers are removed, possibly together with
that form a resulting cluster with less thah.., some other objects. Before phase two starts, each
selected dimensions are not allowed to perform. removed object is filled back to the most similar
The algorithm repeatedly performs the best mergguster subject to the current threshold requirements.
according to the merge scores of the qualifigdue to the thresholds, real outliers are unlikely to
merges. In order to efficiently determine the nexje filled back. From experimental results, the fill

best merge, merge scores are stored in a cache. Agek process usually improves the accuracy.
each merge, the scores related to the merged clusters

are removed from the cache, and the best scores of _ _

the qualified merges that involve the new clust& Complexity analysis

are inserted. The selected dimensions of the newSuppose each cache access (insertion or deletion
cluster are determined by its members accordingdéall the merge scores that involve a cluster) takes
Rpin. Due to the definition of?2, if a dimension is O(f(N)) time, it can be shown that the whole
originally not selected by both merged clusters, dlgorithm takesO(N%d? + N f(N)) time [7]. We
must not be selected by the new cluster. But if implemented three kinds of cache structures: prior-
dimension is originally selected by one or both dfy queue (similar to the one used in [14]), quad tree
the merging clusters, it may or may not be selecteghd Conga line [16], withf (V) ranges fromN to

by the new cluster. Nlog® N.

Whenever the cache becomes empty, no moreThere are many ways to improve the speed per-
qualified merges exist at the current threshold levébrmance of HARP. For two clusters to be qualified
The thresholds will be loosened linearly as eXer merging, the number of common dimensions
plained before (lines 2-3 of Table II). Further roundhat pass the histogram-based validation must ex-
of merging and threshold loosening are carried ockedd,,;,. By checking the maximum number of
until a target number of clusters remain, or theuch common dimensions of all cluster pairs, many
thresholds reach their baseline values and no meheeshold levels can be skipped if they contain no
merging is possible. possible merges. This optimization is most useful

To further improve clustering accuracy, an opwhen the dimensionalities of the clusters are low rel-
tional object reassignment step can be performed afive to the dataset dimensionality. Similarly, when
ter the completion of the hierarchical part. TheS determining the merge score between two clusters,
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TABLE Il

the effectiveness of the relevance index. Each cluster
DATA PARAMETERS OF THE SYNTHETIC DATASETS

then randomly picked its relevant dimensions, where

Parameter Default Values a single dimension could be relevant to multiple
ga’raser Z!ZGJV), ity 52380 clusters. Since dimensions that are irrelevant to
ataset dimensionall .
Number of clustersk) 5 all clusters can be removed by feature selection
Cluster size IV;) 15 to 25% of N techniques, which are not the major concern of
gverage cfluds_ter dir_nens(i{c;na”t‘!réaz)]) [% tﬁ 0.9[% 10 the current paper, we made each dimension to be

omain of dimensions {hin;, max; ,1] to [0,

Local S.D. of relevant dimensions{) 3 to 5% of domain relevant to at least one_dUSte_r'

Artificial data errors ) 5% For each relevant dimension of a cluster, the
Artificial outliers (o) 0% local mean and standard deviation were chosen

randomly from the domain to construct a Gaussian
distribution. Each object in the cluster determined
the R* value of each dimension of the resultingyhether to follow the signature according to the
cluster is computed in turn. Once the number @fata error rate. This was to simulate experimental
Selected dimenSionS iS Conﬂrmed to be |Ower th%d measurement errors. |f an object was Chosen
dmin, the R* values of the remaining dimensions dgy follow the signature, a projected value would be
not need to be computed. sampled from the Gaussian distribution. Otherwise,
When the dataset size is very large, it is alsghd for all irrelevant dimensions, the values would

possible to perform clustering on a random sampi sampled from a uniform distribution over the
only. Upon completion, each unsampled object {$hole domain.

filled back to the most similar cluster subject to the 2y Real data:Lymphoma: It is a gene expression

restriction of the final threshold values. Similarlygstaset used in studying distinct types of diffuse
when the dataset dimensionality is very high, lBrge B-cell lymphoma (Figure 1 of [17]). It con-
constant number of threshold levels can be usgdns 96 samples, each with 4026 expression values
(line 2 of Table I1), so that the quadratic term withyt genes. The samples are categorized into 9 classes
respect tod in the total time complexity becomes,ccording to the category of mMRNA sample studied.
linear. We will show in the next section that thesgye clustered the samples with the genes as the input
speedup methods are feasible in practice. dimensions, and used the class labels to evaluate the
The space complexity of HARP i©)(n) when cjystering performance. Each selected dimension of
Conga line is used, an@(n”) when quad tree or 5 clyster represents a gene that has similar expres-
priority queue is used. Depending on the memOgyons in the member samples. If a cluster contains
available, HARP chooses the best cache structurgd@inly one type of tumor samples, the genes are the

use but produces identical clustering results.  potential signatures for identifying the presence of
the specific type of tumor.
IV. EXPERIMENTS Food: It contains the weight and 6 attributes

In this section we report various experimental réFat, Food Energy, Carbohydrate, Protein, Choles-
sults of HARP and some other clustering algorithnigrol and Saturated Fat) of 961 food it€ém¥Ve

in comparison. More results can be found in [7]. followed [18] to divide the attribute values by the
weight, and standardize each column to have unit

A. Datasets standard deviation. Since the dataset contains no
: class labels, we treat the clustering as an exploratory

1) Synthetic data:Table Il lists the default pa- task and report some interesting f|nd|ngs
rameters used in synthetic data generation.

When generating a dataset, the size of each _ .
cluster and the domain of each dimension weB Comparing algorithms

first determined randomly according to the data 14 gemonstrate the capability of HARP, we com-

parameters. Having different cluster sizes Cre_atﬁéred it with various projected and non-projected
different peak heights at the distributions, whic

test the_Stab”'ty Of.the hlstogram-bgsed Va“datlonZWe downloaded the dataset frdttp://www.ntwrks.com/
mechanism. The different domain sizes are to tesikevichartl.html
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algorithms. For the projected side, we chose PR@alue. When U and V are identical, the index value
CLUS [5], ORCLUS [4] and FastDOC [2] as theywill be one. When V is only as good as a random
have reasonable worst case time and are ableptutition, the index value will be zero.

produce disjoint clusters, which makes it easy to We used precision and recall to evaluate how
compare the clustering results. FastDOC creatsmilar are the selected dimensions and the real rel-
clusters one at a time. We used it to produce disjoietant dimensions. For each cluster, precision is the
clusters by removing the clustered objects beforeimber of real relevant dimensions being selected
forming a new cluster. After forming the targetlivided by the number of selected dimensions.
number of clusters, the unclustered objects weRecall is the number of real relevant dimensions
treated as outliers. For the non-projected camipeing selected divided by the actual number of
we chose a simple agglomerative hierarchical algeeal relevant dimensions. The reported value of a
rithm, two partitional algorithms CLARANS [8] andclustering result is the average of all the clusters.
KPrototype [19] (based on k-medoids and k-means4) Data preprocessingWe generated an “easy-
respectively), and CAST [20], a popular algorithno-cluster” dataset with,.,,=12 and 0=0 to test

for clustering high-dimensional gene expressiahe importance of data preprocessing. We tested
profiles. We believe our choice of algorithms covetsie clustering accuracy of the projected algorithms

a wide spectrum of clustering approaches. with and without standardizing the values of each
dimension, using correct user parameter values. The
C. Other details results (see [7] for details) show that with the global

variance taking into account in the relevance index,
1) Algorithm parametersin all experiments the the performance of HARP is invariant to the stan-
target number of clusters was set to the numbggdization process. For all the other methods, the
of real clusters. For each of the other parametegdystering accuracy was improved by standardiza-
various reasonable values were tried (details cand$h. For fair comparisons, all the synthetic datasets
found in [7]). CAST and FastDOC produced th@sed in the coming sections were standardized.
desired number of clusters only at some specific5) Outlier handling: From some preliminary ex-
parameter values. All results that form fewer thaﬁ'eriments, we noticed that FastDOC and PROCLUS
the desired number of clusters were discarded. tend to discard a large amount of outliers even the
~ 2) Execution:Each experiment was repeated fivgataset contains no or few artificial outliers. In order
times to avoid bias due to randomness (e.g. locatiagsgive a fair comparison of the clustering results,
of initial medoids). For each repeated run, only thg.cept otherwise specified, the synthetic datasets
result that has the best algorithm-specific objectiyged in the coming experiments contain no artificial
score will be considered in the discussions below,tliers. and the outlier removal options of all algo-
3) Evaluation criteria: We used the Adjustedyithms were disabled. For CAST and FastDOC, the
Rand Index (ARI) [21] as the performance metrignclustered objects were still discarded as outliers,
for clustering accuracy. It is based on the Ranghg we accept only results with discarding rates
Index [22], with the expected index value als@ot more than 40%. To show the noise-immunity of

taken into account. It measures how similar are thezRp, there will be a separate subsection dedicated
partition of objects according to the real clusters (4) experiments on noisy data.

and the partition in a clustering result (V). Denote
a,b,c andd as the number of object pairs that are _
in the same cluster in both U and V, in the sanfd. Results on synthetic data

cluster in U but not V, in the same cluster in V but 1) Clustering accuracy:The first set of experi-
not U, and in different clusters in both U and Mments concerns how the clustering accuracy is af-

respectively, ARI is defined as follows: fected by cluster dimensionality,.;. We generated
2(ad — be) eight datasets with,.,; ranging from 4 to 18. For
ARI(U, V) = (6) clarity, we present the results in three different

(a+b)(b+d) +(a+c)c+d) charts in Figure 3. In the charts, and in the other
The more similar are the two partitions (larger figures to be presented later, a line labeled “best”
andd, smallerb andc), the larger will be the ARI and “average” represents the result with the highest
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N /¢'/-' 2 [ rmone ||| ] Tt [ rmmocnems
" o :
0.2
N i B I e B R
Average cluster dimensic g ime ty
(a) The results with the high- (a) Precision of the selected (b) Recall of the selected di-
est ARI values. dimensions. mensions.

Fig. 4. Accuracy of the selected dimensions.

. : correct parameter values were used with their aver-

T sty T s age results when a set of linearly chosen parameter

inputs were used. The average results have much

(b) Comparing the results (c) Clustering accuracy of !ower ARI yalues than the best results, which means
with the highest ARI values ~ PROCLUS and ORCLUS in reality if the correct parameter values are un-
with the average results using  when [,.,;=8, with various known. the optimal results can hardly be obtained.

different parameter values. user parameter inputs. . ! . .

Figure 3c shows the typical fluctuation of accuracy
Fig. 3. Clustering accuracy with different cluster dimensionalitiesf.)f PROCLUS and ORCLUS with various parametgr
inputs, taken from the results on the dataset with
l,.a;=8. Both algorithms achieved their peak perfor-

mance when correct inputs were supplied, but the

AR vallies an?j the averagﬁ relsultsafter tgl'_rEREﬂ\lI\tI%?ror rates raised as the inputs moved away from
parameter values respectively. since e correct values. In comparison, the accuracy of

HARP, Hierarchical and KPrototype used only ONBARP is independent of user inputs

set of parameter values, only one line is presentecﬁ:rom Figure 3b, it is also noted that PROCLUS
for each of them. and ORCLUS did not perform well wheh.,; is
Figure 3a shows the best results (with the higheghall even correct parameter values were used. This
ARI values) of the algorithms. Most algorithmss due to the formation of incorrect tentative clus-
were highly accurate at largk., values, but for ters caused by object assignments that depend on
lye values lower than 50% of, the performance gistance calculations in the input space. In contrast,
difference between different algorithms became agg allowing only merges with maximum number

parent. HARP got the highest ARI values among &k selected dimensions, HARP was able to prevent
algorithms on all datasets, and remained extremefym forming incorrect tentative clusters.

accurate even each cluster had 80% of the dimenext we investigate the selected dimensions

sions irrelevant to them. The results of ORCLUSf the projected clustering algorithms. Figures 4a
reported in [4] are better than the results observedgdRd 4b show the average precision and recall values

our experiments, which is likely caused by the smajk the selected dimensions of the results produced
sizes of our synthetic datasets. ORCLUS works bgsi FastbOC, HARP and PROCLUS.

on large datasets that contain sufficient values forwhen /,.,, is large, HARP tended to be con-

performing PCA. In comparison, its performance ogervative in dimension selection as reflected by
small datasets is less competitive. FastDOC contifie high precision and relatively low recall values.
ued to discard a large amount of non-outlier objectphis means HARP deliberately avoided selecting
with an average discarding rate of 26.3%, whiGgrelevant dimensions when the selected ones were
equals the size of one to two complete clusters. enough for identifying the cluster members cor-
In general the projected algorithms outperformeectly. However, when,..,; is small, HARP tried
the non-projected ones at smajl,, values, but to include all relevant dimensions in order not to
some good results were due to the correct inpoiss any useful information, with the expense of
of parameter values. Figure 3b compares the baffo selecting some irrelevant dimensions. This is
results of FastDOC, ORCLUS and PROCLUS whemot a serious problem as including a few irrele-
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had unsatisfactory performance. ORCLUS appears

gl TR [eeee] sal T ] e | to be very sensitive to outliers, which may due to
ol s eoreus the fact that in late iterations it uses the centroids

L N, | Y ~ | (instead of medoids) as cluster seeds. When the
clustering accuracy is low, each cluster consists of

Adjusted Rand Ind

objects from many different real clusters and the
(a) Clustering accuracy with  (b) Clustering accuracy with centroids will contain a mixture of their signatures.
the presence of outliers. the presence of errors. As a result, the centroids will be similar to each
other, but dissimilar to any data objects, which ruin
the outlier removal mechanism of ORCLUS.
Figure 5b shows the results with increasing
mount of data errors. It shows that the accuracies

clustering accuracy if the signatures at the relevapt e introduced. but HARP only had a mild de-
dimensions are clear enough to identify the Clus_tf'erioration. Similar results are observed when the

members, Wh'.le missing a smgle relevant Q'mens!%'lhster signatures became less concentrated (figures
may mean missing a substantial proportion of in- n be found in [7])

Fig. 5. Clustering results on imperfect data.

. ortion o iy,
formation. If the accuracy of selected dimensions Is

critical to an application, a post-processing step cgn Scalability experiments

be carried out to rank all the dimensions of each In this section we study the scalability of HARP

S based on.théi values_, AnCSfiter ou.t th.ewith increasing dataset size and dimensionality. We
unwanted dimensions according to the applicatiof)-

o : sted the performance of HARP on two sets of
specific needs. Our argument is supported by t Sta, the first with vV increasing from 1000 to
excellent accuracy of HARP at dll.,; values. .

. 500000 (using Conga line as cache structure), and
The best results of FastDOC are characterized §¥% second withi increasing from 100 to 500 and

excellent precision and fair recall values over th§verage cluster dimensionality kept at 30%dof
whole range of,., values. This means it tends 10 The results with increasing dataset size are shown
be parsimonious in dimension selection, which c3R Figure 6a, which confirms that the actual execu-
be a great problem whep.,; is small. The behavior jjon time was bounded by the theoretic time com-
of the best results of PROCLUS is similar to HARPpIexity. For medium-sized datasets’ (=~ 10000),
but is relatively less stable. On the other hand, &% execution time was usually better than ORCLUS
expected, the average results of PROCLUS are nglq FastboC, and comparable to PROCLUS when
satisfactory except at very lardg.; values. the time used in repeated runs is also included. Part
2) Imperfect datasetsAlthough the above ex-b shows the relative execution time and accuracy
periments show that HARP is highly accurate, thghen the sample-based speedup technique described
datasets being used are too ideal with no outlieif, Section IlI-E was applied to the dataset with
low error rates and clear signatures. In the comin@000 objects. For reasonable sample sizes, the
experiments we demonstrate the influence of thesgecution time was much improved with only a little
data parameters on the clustering accuracy. We fix@tbact on the accuracy.
l.eat 10 6 (30% ofd) and generated three sets of The results with increasing dataset dimensional-
data with increasing, e and o,; respectively. We ity are similar (figures can be found in [7]). The
tested the performance of HARP, using PROCLUgkecution time was shown to be sub-quadratic with
and ORCLUS (with correct parameter values) aespect tod. When HARP was speeded up by
reference. The results are shown in Figure 5.  using fewer threshold levels, the execution time
Figures 5a shows the results on the datasets withs greatly reduced, but the clustering accuracy
artificial outliers. From the figure, the performanceemained excellent.
of HARP was less sensitive to outliers than the other
two algorithms, and the histogram-based validatidh Results on real data
mechanism was effective in improving the accuracy For the lymphoma data, we used HARP and
of HARP. In comparison, ORCLUS and PROCLUROCLUS as the representatives of projected clus-
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V. DISCUSSIONS AND FUTURE WORK

The dynamic threshold loosening mechanism of
o HARP is shown to be successful in eliminating the
aaaaaaaaaaa reliance on user parameters. We believe the concept

of dynamic parameter tuning has a great potential
value in problems where the algorithms usually rely

(a) Execution time with in- (b) Relative accuracy and
creasing\N. execution time with various ON user parameters.
sample sizes. The experimental results also reveal that projected
clustering is meaningful only when the dimension-
Fig. 6. Clustering results of HARP with increasing. alities of the clusters are well below the dataset

dimensionality. We recommend further studies on

projected clustering to focus on datasets With,

not more than 30% ofl. In some gene expression
tering algorithms. HARP got an ARI value of 0.75datasets, the number of relevant genes of each func-
which is higher than the values obtained by all othépbn group can be lower than 10% of the total num-
algorithms. The samples of different types were wdler of genes. Most projected clustering algorithms
separated into different clusters, and most sampl@sxcluding HARP) may not perform well, while the
(43 out of 46) of the major class (DLBCL) were pusubspace clustering approaches (such as [10]) intro-
into a single cluster. The clusters of HARP havauced in Section Il may run indefinitely long since
2014 to 3515 selected dimensions, corresponditige absolute value of..,, can be very high (e.qg.
to 50% to 87% of all dimensions. The selectetl00). Further improvements of projected clustering
dimensions display some biological significance. lmgorithms are called for.
Figure 2 of [17], some genes are highlighted as thelt is also interesting to see if HARP can be
signatures of some sample types or biological prorodified to produce pattern-based and non-disjoint
cess. We ranked the selected genes of each clustasters, which are more appropriate in some situa-
according to theirR values, and found that a largdions. A preliminary study can be found in [7].
number of relevant signature genes were selected by
the clusters with very high ranking anil values.
For example, a subcluster of the large DLBCL
cluster has all signature genes in the proliferation !n this paper, we analyzed the major challenges
region selected. Among the 3347 selected genesObfthe projected clustering problem, and proposed
it, all the signature genes in the region are withi# New algorithm HARP that does not depend on
the top 700 ranked genes. About 70% of them a¥ser inputs in determining the relevant dimensions

even within the top 75, with? values above 0.83. Of clusters. It makes use of the relevance index,
histogram-based validation and dynamic threshold

For the food data, we used HARP to produggosening to adaptively adjust the merging require-
twenty clusters. Some interesting clusters can Rents according to the clustering status. Experimen-
found in [7]. For example, one of them contains aff| results on synthetic and real data suggest that
twelve margarine items in the dataset. Three of thgaRP has a higher accuracy and usability than the
dimensions have high relevance inde>§ values aBFbjected and non-projected algorithms being com-
were selected by HARP. However, the index valuggred, and it remains highly accurate when handling
of the other three dimensions are low and they weggjsy data. The interesting clusters discovered in the

therefore not selected. This means the margarighphoma and food data suggest that HARP could
items are close in the selected three-dimensiong 3 practical tool for real applications.

subspace, but may not be close in the input space.
We verified this by performing ten rounds of KPro-
totype on the data. In all cases, the twelve items
were distributed to two or more clusters, which The research of the second author is supported by
suggests that the non-projected clustering algoritrangrant from the Research Grant Council of Hong
is unable to produce the same interesting clusterKong. (Project number : HKU 7141/03E).

VI. CONCLUSIONS
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