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Abstract

In microarray gene expression data, clusters may hide in certain subspaces. For example, a set of co-regulated genes may have

similar expression patterns in only a subset of the samples in which certain regulating factors are present. Their expression patterns

could be dissimilar when measuring in the full input space. Traditional clustering algorithms that make use of such similarity

measurements may fail to identify the clusters. In recent years a number of algorithms have been proposed to identify this kind of

projected clusters, but many of them rely on some critical parameters whose proper values are hard for users to determine. In this

paper, a new algorithm that dynamically adjusts its internal thresholds is proposed. It has a low dependency on user parameters

while allowing users to input some domain knowledge should they be available. Experimental results show that the algorithm is

capable of identifying some interesting projected clusters.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Clustering is a popular data mining technique for

extracting information from gene expression profiles. A
large variety of clustering methods have been used to

generate many kinds of interesting clusters. Some recent

studies include [9,10,15,20]. The goal of these clustering

methods is to partition similar objects (samples or genes)

into clusters such that intra-cluster similarity is maxi-

mized while inter-cluster similarity is minimized. Sample

clustering is common in tumor studies for identifying

tumor subtypes [4,14,21]. Gene clustering has been used
to predict groups of genes that have similar functions or

are co-regulated [8,13,17]. It has also become very

popular to cluster both samples and genes individually

and visualize the results in a single figure [4]. In this

paper, we will use the terms object and dimension to

mean a row and a column of a dataset, respectively. An

object refers to a gene when performing gene clustering,
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and refers to a sample when performing sample clus-

tering. The opposite holds for a dimension.

All the mentioned methods assume object similarity is

measured in the input space formed by all the dimen-
sions of a dataset. It has been pointed out that gene

expression data may exhibit some checkerboard struc-

tures [18,23], in which each block is defined by a subset

of objects and a subset of dimensions where the objects

are similar when considering only the dimensions in the

subset. When all dimensions are considered, the objects

may appear to be dissimilar. This may occur when, for

example, two genes have similar expression patterns
only in a subset of samples where certain regulating

factors are present. In the other samples, the two genes

may express differently. Each block can be viewed as a

cluster of objects ‘‘projecting’’ onto a subspace defined

by the corresponding dimensions. This kind of clusters is

thus referred to as projected clusters [1].

A similar concept has long been studied in supervised

learning. For example, in decision tree classifiers [25],
each generated rule can be regarded as a region in a

subspace that contains mostly the members of a single

class. We consider in this paper the unsupervised version
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of the problem, which concerns the finding of both ob-
ject partitions and their subspaces from unlabeled data.

Also, we assume that all members of a cluster can be

found in a single region in a subspace (cf. multiple de-

cision rules may be needed to cover all objects of a

class).

We now give a more formal definition of projected

clusters. Given a dataset D with N objects and a set V of

d input dimensions, a projected cluster CI contains NI

objects and is defined in a dI -dimensional subspace

formed by the set VI of dimensions, where VI � V . In the

subspace, the members of CI are similar to each other

according to a similarity function, but dissimilar to

other objects not in CI . dI is called the dimensionality of

cluster CI , which is the size of the set of relevant di-

mensions VI of the cluster. The complementary set

V � VI is called the irrelevant dimensions of the cluster.
The members of a cluster are dissimilar in the subspace

formed by its irrelevant dimensions. A dimension can be

relevant to zero, one, or more clusters. To distinguish

the clusters defined based on some domain knowledge

and the clusters identified by a clustering algorithm, we

will call the former ones the real clusters and their rel-

evant dimensions the real relevant dimensions, while the

latter kind of clusters will simply be called the clusters

and the identified relevant dimensions the selected di-

mensions. In the literature the term ‘‘class’’ is commonly

used to represent a group of objects defined according to

some domain knowledge. The dimensions or attributes

that describe each class are called its ‘‘features.’’ In the

current text, sometimes we need to represent a set of

objects in a dataset that belong to the same class. Since

the set is a sample of the class instead of the class itself,
we prefer to use the less popular term ‘‘real cluster’’ to

describe it instead of calling it a ‘‘class’’ to avoid con-

fusion.

Notice that the definition does not assume any kind

of object similarity, although a cluster is most often

regarded as a group of objects having a small distance
Fig. 1. An example illustrating some discussed concepts: (A0) Distance-base

irrelevant dimension. In (A0), A is more similar to B than to C in distance-b

clustering. In (B0), the objects have similar value trends except along dimens
from each other (based on a distance function such as
Euclidean distance). This kind of clustering, what we

will describe as distance-based, has been successful in

many studies on gene expression data analysis. For in-

stance, most of the studies cited above implicitly assume

distance-based clustering. In this paper, we will also

introduce a new algorithm that is distance-based. On the

other hand, there are situations where it is more suitable

to measure the similarity between two objects by their
rise and fall expression patterns [7,19,27]. Two objects

are similar if they have the same direction of response

across the relevant dimensions, regardless of their ab-

solute expression values. We will discuss later how this

kind of pattern-based clustering can be handled by a

modified distance-based clustering algorithm.

The above concepts are illustrated in Fig. 1. In part

A0, distance-based clustering assumes A is more similar
to B than to C, while pattern-based clustering assumes

the reverse. Part B0 shows a projected cluster based on

pattern-based clustering, to which dimension 5 is irrel-

evant.

The goal of a projected clustering algorithm is to

form a number of high-quality projected clusters. Basi-

cally, a cluster is of high quality if its member objects are

unexpectedly similar. The actual quality measure used in
this paper will be described in Section 3. We will first

assume clusters are disjoint, i.e., each object belongs to

only one cluster, and later extend our study to consider

also non-disjoint clusters since they are common in gene

clustering, where each gene may belong to multiple

groups according to different categorizations.

Before moving on, we need to emphasize the differ-

ence between projected clustering and feature selection.
Although both concern the selection (and possibly

construction) of important features, feature selection

defines a feature space for the whole dataset, while

projected clustering identifies a possibly different sub-

space for each cluster. Due to the difference, feature

selection is performed prior to clustering, while a pro-
d clustering vs. pattern-based clustering. (B0) Relevant dimension vs.

ased clustering, but it is more similar to C than to B in pattern-based

ion 5, so the dimension 5 is an irrelevant dimension of the cluster.
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jected clustering algorithm determines the subspace of
each cluster during the clustering process. Feature se-

lection can be used as a preprocessing step of projected

clustering, but it alone cannot solve the projected clus-

tering problem.

The remaining of this paper is organized as follows:

in the next section, we will review some projected clus-

tering approaches proposed in recent years, and discuss

some of their potential problems. A new algorithm will
be proposed in Section 3, which is designed to avoid the

problems. Experimental results on real datasets will be

presented in Section 4, and some discussions and the

conclusion of the study will be given in Sections 5 and 6,

respectively.
2. Related work

There have been a lot of studies on projected clus-

tering and its related problems subspace clustering [3]

and biclustering [7] in recent years. A thorough survey of

the three problems can be found in [29]. Table 1 sum-

marizes their main differences. In this section, we focus

on the related work on the projected clustering problem,

which assumes a distance-based similarity definition and
produces disjoint clusters. We are especially interested in

this problem because of the large number of fruitful

studies on clustering gene expression profiles that also

make the two assumptions, and the few reported studies

on applying projected clustering on gene expression

profiles.

There are two major challenges in projected cluster-

ing that make it distinctive from traditional clustering.
The first challenge is the simultaneous determination of

both cluster members and relevant dimensions. Cluster

members are determined by calculating object distances

in the subspace formed by the relevant dimensions,

while the relevant dimensions are determined by mea-

suring the distances between the projections of the

cluster members along different dimensions. One com-

mon approach to tackling this chicken-and-egg problem
is to form some tentative clusters according to some

heuristics, determine their relevant dimensions, and then

refine the cluster members based on the selected di-

mensions. The heuristics being used are critical to the

effectiveness of the algorithm. If inappropriate heuristics

are used, the tentative clusters formed will not help the

discovery of real clusters.
Table 1

Comparing the three related problems

Cluster definition

Projected clustering Distance-based

Subspace clustering Distance-based

Biclustering Mainly pattern-based
The second challenge is determining the dimension-
ality of each cluster, which is usually unknown to users

when working on gene expression profiles due to the

lack of domain knowledge and the large number of

possible values given the high dimensionality of data.

We now review some proposed projected clustering

approaches and discuss how they are affected by the

challenges. The partitional approach PROCLUS [1] is

based on the k-medoids method [22]. As in traditional k-
medoids methods, some objects are initially chosen as

the medoids. But before assigning every object in the

dataset to the nearest medoid, each medoid is first

temporarily assigned a set of neighboring objects that

are close to it in the input space to form a tentative

cluster. For each tentative cluster, all dimensions are

sorted according to the average distance between the

projected values of the medoid and the neighboring
objects. On average l dimensions with the smallest av-

erage distances are selected as the relevant dimensions

for each cluster, where l is a parameter value supplied by

user. Normal object assignment then resumes, but the

distance between an object and a medoid is computed

using only the selected dimensions. Medoids with too

few assigned objects are regarded as outliers, which are

replaced by some other objects to start a new iteration.
The user parameter l may introduce a usability

problem since the correct value to use is hard to deter-

mine. Another potential problem arises when the real

clusters have few relevant dimensions, in which case the

cluster members may not be close to each other in the

full input space. Since the tentative clusters are formed

based on distance calculations in the input space, when a

member of a real cluster is chosen as a medoid, the
neighboring objects assigned to it may not come from

the same real cluster. Subsequently, the dimensions se-

lected would not be the real relevant dimensions and the

resulting cluster would be mixed of objects from differ-

ent real clusters.

Another partitional algorithm ORCLUS [2] was

proposed to improve PROCLUS. According to the ex-

perimental results reported in [2], it is more accurate and
stable than PROCLUS. Nevertheless, it still relies on

user-supplied values in deciding the number of dimen-

sions to select for each cluster.

In the hypercube approach DOC and its variant

FastDOC [24], each cluster is defined as a hypercube

with width 2x, where x is a user supplied value. The

clusters are formed one after another. To find a cluster,
Disjoint clusters Clusters reported

True Highest quality

False All passing quality thresholds

False Highest quality
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a pivot point is randomly chosen as the cluster center
and a small set of objects is randomly sampled to form a

tentative cluster around the pivot point. A dimension is

selected if and only if the distance between the projected

values of every sample and the pivot point on the di-

mension is no more than x. The tentative cluster is thus
bounded by a hypercube with width 2x. All objects in

the dataset falling into the hypercube are grouped to

form a candidate cluster. More random samples and
pivot points are then tried to form more candidate

clusters, and a specially designed function is used to

evaluate the quality of them. The candidate cluster with

the best evaluation score is accepted, and the whole

process repeats to find other clusters.

As with PROCLUS and ORCLUS, the selected di-

mensions of DOC and FastDOC are determined by a

user parameter. In addition, they also restrict each
cluster to be a hypercube with equal width along all

relevant dimensions, which is unlikely to be true in real

data. Tentative clusters are formed by random sampling,

which avoids direct distance calculations in the input

space. However, the number of tentative clusters re-

quired to try can become so large that seriously affects

the speed performance.

Summarizing the above observations, to apply pro-
jected clustering on gene expression data, it would be

preferable to develop an algorithm that can identify the

dimensionalities of the clusters directly from data and

avoid the formation of problematic tentative clusters. In

the next section, we will describe a new projected clus-

tering algorithm HARP (a Hierarchical approach with

Automatic Relevant dimension selection for Projected

clustering) [29] that satisfies these requirements. It is an
agglomerative hierarchical clustering algorithm with

each object treated as a singleton cluster at the begin-

ning, and the most similar clusters are merged iteratively

according to a merge score. Three building components

of the algorithm will be introduced first, followed by a

description of the complete algorithm, its computational

complexity, and some possible extensions.
3. The HARP Algorithm

3.1. Relevance index, cluster quality, and merge score

In distance-based projected clustering, a cluster can

be viewed as a group of objects being unexpectedly close

to each other in a certain subspace. In other words, for a
dimension to be relevant to a cluster, the projections of

the cluster members on the dimension should be unex-

pectedly close to each other. This closeness can be

measured by the ratio of the variance within the cluster

to the variance in the whole dataset. Denote r2Ij as the

variance of projected values of all objects in CI along

dimension vj (the local variance) and r�j2 as the variance
of projected values along vj in the whole dataset (the
global variance), the relevance index of vj in cluster CI is

defined as follows:

RIj ¼ 1�
r2
Ij

r2
�j
: ð1Þ

The index gives a high value when the local variance

is small compared to the global variance, which refers

to the situation where the projections of the cluster

members on the dimension are close, and the closeness
is not due to a small average distance between the

projected values in the whole dataset. A dimension

receives an index value close to the maximum of one if

the local variance is extremely small, which means the

projections form an excellent signature for identifying

the cluster members. Alternatively, if the local variance

is only as small as the global variance, the dimension

will receive an index value of zero. This suggests a
baseline for dimension selection: a negative R value

indicates a dimension is not more relevant to a cluster

than to a random sample of objects. The dimension

should therefore not be selected. We will discuss later

how this baseline is used to define the stopping criteria

of HARP.

To prevent the index from being undefined in some

degenerate situations, we assume there does not exist
any dimensions with zero global variances (on which all

objects have the same projected value). If such a di-

mension does exist, it would not be useful at all and

could be safely removed before the clustering process.

Also, if a cluster contains only one object, the index

values of all dimensions are set to one.

Conceptually, incorporating the global variance in

the relevance index is similar to performing normaliza-
tion to the dataset. The use of the index thus implicitly

performs normalization without the need of an explicit

preprocessing step. An advantage of the index is the

strong intuitive meaning of the sign of its values, which

helps interpret the clustering results.

Based on the relevance index, the quality of a cluster

CI can be measured by the sum of the index values of all

the selected dimensions:

QI ¼
X
vj2VI

RIj: ð2Þ

In general, the more selected dimensions a cluster has,

and the larger are their respective R values, the larger

will be the value of Q. We define the quality measure in

this way since an identified cluster is more likely to

consist of objects from the same real cluster (the cluster

is more likely to be ‘‘correct’’) if the identified cluster has

more selected dimensions and the dimensions have

higher relevance index values [29]. We will discuss how
HARP determines the relevant dimensions of each

cluster later. At this point it can be assumed that each

cluster has a reasonable set of selected dimensions.
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Similarly, a score can be defined to evaluate the merge
between two clusters. Basically, if two clusters can be

merged to form a cluster with a high quality, themerge is a

potentially good one, i.e., the two clusters probably con-

tain objects from the same real cluster. However, in case

the two merging clusters have a large size difference, an

unfavorable situation called mutual disagreement can

occur. Consider a large cluster with a thousand objects

and a small one with only five objects. If they are merged
to form a new cluster, its mean and variance of projected

values will highly resemble the original values of the large

cluster, which will dominate the choice of the dimensions

to be selected. If a dimension is originally selected by the

large cluster, it will probably be selected by the new cluster

also nomatter the projected values of the small cluster are

close to those of the large cluster or not. The resulting

cluster canhave a highQ score even the two clusters have a
strong mutual disagreement on the signatures of the re-

sulting cluster.

To cope with this problem, we modify the relevance

index to take into account the mutual disagreement

phenomenon. Suppose CI3 is the resulting cluster formed

by merging CI1 and CI2 , the mutual-disagreement-sensi-

tive relevance index of dimension vj in CI3 is defined as

follows:

R�
I3j

¼ RI1jjI2 þ RI2jjI1
2

;

RI1jjI2 ¼
1� r2

I1j
þ ðxI1j � xI2jÞ

2

r2
�j

¼ 1�
P

xi2CI1
ðxij � xI2jÞ

2
=Ni

r2
�j

;

where xij is the projection of object xi on dimension vj,
and xIj is the mean projected value of all members of

cluster CI on vj. RI1jjI2 is the adjusted relevance index of

vj in CI1 given that CI1 is merging with CI2 . The numer-

ator of its second term is the average squared distance

between the projected values of CI1 on vj from the mean

projected value of CI2 . RI2jjI1 is defined similarly. If the
two clusters do not agree on the values along vj,
ðxI1j � xI2jÞ

2
will effectively diminish the R� score of the

dimension. With R�
I3j

defined, the merge score between

clusters CI1 and CI2 can now be defined as follows:
Fig. 2. The frequency distribution of a typical dimension: (A0) The frequency d
is relevant to some clusters, its frequency distribution should contain a num

average bin frequency (dotted line in (B0)) in case of a uniform background
MSðCI1 ;CI2Þ ¼
X
vj2VI3

R�
I3j

¼
X
vj2VI3

RI1jjI2 þ RI2jjI1
2

¼
X
vj2VI3

1

"
�
r2
I1j

þ r2
I2j

þ 2ðxI1j � xI2jÞ
2

r2
�j

#
:

The MS score will be used to determine the merge

order. Merges with higher MS scores will be allowed to

perform earlier.

3.2. Validation of similarity scores

The MS function concerns both the quality and

number of selected dimensions, but does not take into

account the size of a cluster. Suppose there is a set C of

objects all belonging to real clusters to which dimension

vj is irrelevant. If the size of C is small, it is not un-

common to find the projections of the objects in C on vj
being close to each other due to random chance. If C is

large, the probability for the same phenomenon to occur
is relatively small. Looking in another way, if a dimen-

sion has a high relevance index value in a cluster, the

more objects the cluster contains, the less likely the high

index value is merely by chance.

Since HARP is a hierarchical algorithm with each

initial cluster containing a single object, it is not mean-

ingful to incorporate cluster size directly in the calcula-

tion of merge scores. However, it is possible to utilize the
potential cluster size in estimating the significance of a

cluster, which can be obtained from the frequency dis-

tribution of projected values. Fig. 2A0 shows the distri-

bution of a typical dimension that is relevant to some

real clusters. The distribution contains a number of

peaks, which correspond to the signatures of the real

clusters. The base level at the troughs is likely due to

random values. Suppose a cluster contains members
with projected values within the interval [a, b], it has a

high potential to merge with other clusters to form a

cluster with a significant size and a high concentration of

projected values around the [a, b] region. On the other

hand, if a cluster contains members with projected val-

ues within the interval [c, d], although the cluster may

receive a high R score at the dimension, the cluster is

unable to keep the high R value if it is to grow to a
istribution. (B0) A histogram built from the distribution. If a dimension

ber of peaks much higher than the random noise level, which is the

distribution.
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significant size. In other words, the high concentration
of projected values is probably due to random chance.

The R value of the cluster should therefore be invali-

dated in order to prevent more objects to be merged into

the cluster due to the fake signature.

Based on the observation, we develop a histogram-

based validationmechanism for preventing the formation

of incorrect clusters due to the fake signatures. The idea is

that if a dimension is relevant to a cluster, the corre-
sponding histogram should contain a peak around the

signature values (see regions A and B in Fig. 2B0). The
width and height of the peak depend on the properties of

the cluster, but provided the cluster has a significant size,

the peak should exceed the random noise level, which

corresponds to the mean frequency in case of a uniform

distribution (shown by the dotted line). Clusters covered

by bins that stay below the noise level are statistically
insignificant (region C), and the relevance index value of

the dimension in the cluster will be set to zero.

The histogram-based validation is usually applied on

gene clustering only, but not on sample clustering. This

is because in the latter case the number of objects

(samples) is usually too small to build a histogram that

could simulate the real distribution of expression values.

3.3. Dynamic threshold loosening

When we introduced the MS function in Section 3.1

we assumed that there is a way to determine the relevant

dimensions of each cluster. In this section, we discuss

how this is made possible by the dynamic threshold

loosening mechanism.

As discussed in Section 3.1, a cluster ismore likely to be
correct if it contains a larger number of selected dimen-

sions, and the selected dimensions have higher relevance

index values. This means merges that form resulting

clusters with both properties should be allowed to per-

form earlier. Practically, this is achieved by two internal

thresholds Rmin and dmin. Two clusters are allowed to

merge if and only if the resulting cluster has dmin or more

selected dimensions, and a dimension vj is selected if and
only ifR�

Ij PRmin. At any time, the two thresholds define a

set of allowed merges where the actual merging order

within the set is determined by the MS scores.

At the beginning, Rmin and dmin are initialized to their

tightest (most restrictive, i.e., highest) values 1 and d,
respectively. All allowed merges produce clusters that

contain identical objects, so the clusters must be correct.

At some point, there will be no more qualified merges.
The thresholds will be slightly loosened to qualify some

new merges. Whenever all qualified merges have been

performed, the thresholds will be further loosened. As

clustering proceeds, the clusters grow bigger in size. The

projections of the cluster members on the real relevant

dimensions remain close to each other, but the chance of

having similar closeness of projections on other dimen-
sions drops, so as their relevance index values. This
allows the real relevant dimensions to be clearly differ-

entiated from the irrelevant dimensions, which in turn

ensures the formation of correct clusters.

To guarantee the quality of the final clusters, the two

thresholds are associated with baseline values such that

when the baselines are reached, no further loosening is

allowed. As mentioned in Section 3.1, a negative R value

means that a dimension is very unlikely to be relevant to
a cluster. The baseline of Rmin is thus set to zero. For dmin,

the baseline is set to one, which is the minimum value for

a cluster to be defined as a projected cluster. We will see

later that the HARP algorithm allows users to specify an

optional target number of clusters. According to our

experience, if such a value is specified, the algorithm

usually finishes the clustering process well before the

thresholds reach their baselines. The clusters produced
thus contain selected dimensions with R scores much

better than that of a random set of projected values.

There are many possible ways to loosen the threshold

values. Fromour empirical study, a simple linear loosening

scheme is found to be very adaptive and performed well.

In this scheme, there is a fixed number of threshold levels

such that whenever no more qualified merges remain, the

values of the two thresholds are updated using a linear
interpolation towards the baseline values (see Section 3.4

for details). By default, we set the number of threshold

loosening steps to the dataset dimensionality d such that

after each threshold loosening, dmin is reduced by 1.

Obviously, while the simple loosening mechanism and

the default number of loosening steps work well in our

experiments, they are not always the best choice. To this

end, we allow users to input some domain knowledge
should they be available. Users are allowed to input the

initial and baseline values for the two thresholds and the

number of loosening steps. They may also select an al-

ternative loosening scheme (e.g., aggressive loosening

that always loosens the threshold that leads to more

qualified merges, or conservative loosening that does the

reverse), or specify their preferred scheme as a plugin

procedure.

3.4. The complete algorithm

The skeleton of the whole algorithm using the simple

loosening scheme and the default parameter values is

shown in Algorithm 1, and Procedure 1–5 list the

pseudo codes of its main procedures.

At the beginning of the clustering process, each object
forms a singleton cluster. The dimensionality and rele-

vance thresholds dmin and Rmin are initialized to their

tightest values. For each cluster, the dimensions that

satisfy the threshold requirements are selected. Themerge

score between each pair of clusters is then calculated.Only

merges that form a resulting cluster with dmin or more se-

lected dimensions are qualified and the others are ignored.
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Algorithm HARP (k: target no. of clusters (default:
1))
1
 For step:¼ 0 to d � 1 do {

2
 dmin :¼ d � step

3
 Rmin :¼ 1� step=ðd � 1)

4
 Foreach cluster CI
5
 SelectDim(CI , Rmin)

6
 BuildScoreCache(dmin, Rmin)

7
 While cache is not empty {

8
 // CI1 and CI2 are the clusters involved in the

9
 // best merge, which forms the new cluster CI3

10
 CI3 :¼ CI1 [ CI2

11
 SelectDimNew(CI3 , Rmin)

12
 UpdateScoreCache(CI3 , dmin, Rmin)

13
 If clusters remained ¼ k

14
 Goto 17

15
 }

16
 }

17
 ReassignObjects()

End
Algorithm 1. The HARP algorithm

Procedure BuildScoreCache(dmin: dim. threshold,

Rmin: rel. threshold)
1
 Foreach cluster pair CI1 , CI2 do {

2
 CI3 :¼ CI1 [ CI2

3
 SelectDimNew (CI3 , Rmin)

4
 If dI3 > dmin
5
 Insert MS(CI1 , CI2 ) into score cache

6
 }

End
Procedure 1. The score cache building procedure.
Procedure SelectDim (CI : target cluster, Rmin: rel.

threshold)
1
 Foreach dimension vj

2
 If RIj > Rmin and ValidRel(CI , vj)

3
 Select vj for CI
End
Procedure 2. The dimension selection procedure for an
existing cluster.

Procedure SelectDimNew(CI3 : target cluster, Rmin: rel.

threshold)
1
 Foreach dimension vj {

2
 // CI3 is a potential cluster formed by merging

CI1 and CI2

3
 If R�Ij > Rmin and ValidRel(CI1 , vj) and Vali-

dRel(CI2 , vj)

4
 Select vj for CI3

5
 }

End
Procedure 3. The dimension selection procedure for a

new cluster.
Procedure ValidRel(CI : target cluster, vj: target di-
mension)
1
 lowv :¼ maxðxIj � 2rIj, minIj)

2
 highv :¼ minðxIj þ 2rIj, maxIj)

3
 If mean frequency of the bins covering [lowv,

highv] < mean frequency of all bins

4
 return false

5
 Else

6
 return true

End
Procedure 4. The relevance index validation procedure.

Procedure UpdateScoreCache(CI3 : new cluster, dmin:

dim. threshold, Rmin: rel. threshold)
1
 // CI3 is formed by merging CI1 and CI2

2
 Delete all entries involving CI1 and CI2 from cache

3
 Foreach cluster CI4 6¼ CI3 do {

4
 CI5 :¼ CI3 [ CI4

5
 SelectDimNew(CI5 , Rmin)

6
 If dI5 > dmin
7
 Insert MS(CI3 , CI4 ) into score cache

8
 }

End
Procedure 5. The score cache updating procedure.
The algorithm repeatedly performs the best merge

according to the MS scores of the qualified merges. To

efficiently determine the next best merge, merge scores

are stored in a cache (e.g., a quad tree or a Conga line

[12]). After each merge, the scores related to the merged
clusters are removed from the cache, and the best scores

of the qualified merges that involve the new cluster are

inserted back. The selected dimensions of the new clus-

ter are determined by its members according to Rmin.

According to the definition of R, if a dimension is

originally not selected by both merging clusters, it must

not be selected by the new cluster. However, if a di-

mension is originally selected by one or both of the
merging clusters, it may or may not be selected by the

new cluster.

Whenever the cache becomes empty, there are no
more qualified merges at the current threshold level. The

thresholds will be loosened linearly according to the

formulas in lines 2 and 3 of Algorithm 1. Further rounds

of merging and threshold loosening will be carried out

until a target number of clusters remain, or the thresh-

olds reach their baseline values and no more qualified

merges exist.

To further improve clustering accuracy, an optional
object reassignment step can be performed after the

completion of the hierarchical part. The MS score be-

tween each clustered object and each cluster is computed

based on the final threshold values when the hierarchical
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part ends. After computing all the scores, each of the
objects is assigned to the cluster with the highest MS
score. The process repeats until convergence or a max-

imum number of iterations are reached.

The parameter k that specifies the target number of

clusters is optional. Like other hierarchical clustering

methods, k can be set to 1 and the whole clustering

process can be logged as a dendrogram,1 which allows

users to determine the cluster boundaries from a
graphical representation (e.g. [11]), or cut the tree

according to the merge order of the clusters and a

value of k determined a posteriori. Also, it can be

observed that the dynamic threshold loosening mech-

anism relies on the hierarchical nature of HARP.

These explain why we adopt the hierarchical approach

in spite of its intrinsic high time complexity. HARP is

especially suitable for applications where accuracy is
the first priority and the datasets are of moderate si-

zes, such as gene expression profiles. For instance,

clustering a typical gene expression dataset with 5000

genes and 50 samples takes 10–20min on a desktop

PC, which is quite reasonable. To deal with very large

datasets, we will discuss some speedup methods in the

next section.

3.5. Complexity analysis

It can be shown that the worst case time complexity

of HARP is O(N 2d2 þ Nf ðNÞ), where f ðNÞ is a func-

tion depending on the cache structure being used to

store merge scores. For example, f ðNÞ equals N when

quad tree is used and N log2 N when Conga line is

used.
It is possible to improve the speed performance of

HARP in a number of ways. For two clusters to be

qualified for merging, the number of common dimen-

sions that pass the histogram-based validation must

exceed the dmin threshold. By checking the maximum

number of such common dimensions of all cluster pairs,

many threshold levels could be skipped if they contain

no qualified merges. This optimization is most useful
when the dimensionalities of the clusters are low relative

to the dataset dimensionality. Similarly, when deter-

mining the merge score between two clusters, the R�

value of each dimension of the resulting cluster is

computed in turn. Once the number of selected dimen-

sions is confirmed to be lower than dmin, the R� values of
the remaining dimensions do not need to be computed

as the merges must not be qualified.
1 Due to the threshold requirements, it is not always possible to

merge the objects into a single cluster at the end of clustering. In

general, the dendrograms of HARP are forests of trees.
In practice, the execution time of HARP is rea-
sonable with medium-sized datasets, but it can become

unacceptable when the dataset size or dimensionality is

very large. We propose two ways to speedup the

clustering process. When the dataset size is large,

clustering can be performed on a random sample of

objects. Upon completion of the clustering process,

each unsampled object is filled back to the most sim-

ilar cluster subject to the restriction of the final
threshold values. When the dataset dimensionality is

high, a constant number of threshold levels can be

used (line 2 of Algorithm 1), so that the quadratic

term with respect to d in the total time complexity

becomes linear.

3.6. Extensions

As discussed previously, there are situations where

pattern-based clustering and non-disjoint clusters are

desirable. HARP can be extended to satisfy these two

requirements. To consider pattern-based similarity, the

input dataset is first preprocessed by subtracting each

expression value by the row average so that all resulting

rows have a zero mean. Each resulting expression value

measures the relative expression level of the object along
the particular dimension. The distance between two

preprocessed objects captures their pattern similarity in

the full input space. A similar mechanism is carried out

to determine the pattern similarity between two clusters

in the subspace of the resulting cluster formed by

merging the clusters. Suppose clusters CI1 and CI2 have

relevant dimensions VI1 and VI2 , respectively, and they

can be merged to form CI3 . The potential set of relevant
dimensions of CI3 , V

est
I3 , is estimated by the intersection

of VI1 and VI2 . Each object in CI1 and CI2 subtracts their

expression values by the mean expression along the di-

mensions in V est
I3 . The distance between the two clusters

in the subspace formed by V est
I3 thus captures their pat-

tern similarity in the subspace. The set of selected di-

mensions can be refined by comparing the relevance

index value of each dimension with the Rmin threshold,
and the process can be repeated a few times to identify a

satisfactory set of selected dimensions.

When clustering completes, for each produced cluster

CI , all the objects in the dataset will be examined to see

if they can be merged into CI without lowering its

quality. Each object is regarded as a singleton cluster,

and its expression values are adjusted as described

above according to the relevant dimensions of CI . The
MS score between it and CI is calculated subject to the

thresholds where dmin and Rmin are set as the number

and minimum R value of the relevant dimensions of CI .

All the objects involved in the allowed merges are as-

signed as members of CI . Since each object can be as-

signed to multiple clusters, the final clusters are likely to

be non-disjoint.



Table 2

The distance ratios of some interesting clusters identified by HARP

from the lymphoma data

Samples No. of

selected

genes

A1 A2 A3

6 RAT 2456 0.72 1.32 0.87

43 DLBCL,

2 NILNT

3515 0.96 1.25 1.02

10 ABB, 1 TCL 2734 0.80 1.32 1.00

9 FL, 2 GCB,

2 RBB

3104 0.85 1.38 1.00

11 CLL, 2 RBB 2614 0.82 1.27 0.97

16 DLBCL 3347 0.90 1.38 1.01

27 DLBCL,

2 NILNT

3610 0.96 1.32 1.00

Abbreviations. ABB, activated blood B; CLL, mantle cell lym-

phoma and chronic lymphocytic leukemia; DLBCL, diffuse large B-cell

lymphoma; FL, follicular lymphoma, GCB.
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4. Experiments

In this section, we present the experimental results of

HARP on three real datasets. Due to space limitation,

we omit some extensive experimental results that com-

pare HARP with seven other projected and non-pro-

jected clustering algorithms on both synthetic and real

datasets. The results show that HARP is able to identify

some projected clusters hidden in some low-dimensional
space that are missed by the other algorithms. The de-

tails can be found in [29].

4.1. Datasets

Lymphoma. It is a dataset used in studying distinct

types of diffuse large B-cell lymphoma (DLBCL) (Fig. 1

of [4]). It contains 96 samples, each with 4026 expression
values. The samples are categorized into 9 classes ac-

cording to the category of mRNA sample studied. We

used HARP to perform distance-based clustering to

produce 9 sample clusters. Each relevant dimension of a

cluster represents a gene that has similar expression

levels in the member samples of the cluster, which is a

potential signature of the sample type.

Leukemia. It consists of 38 bone marrow samples
obtained from acute leukemia patients [14], 27 of them

were diagnosed as acute lymphoblastic leukemia

(ALL), and 11 as acute myeloid leukemia (AML).

Each sample is described by the expression values of

7129 genes. The ALL samples can be further classified

into two classes, one containing 19 B-cell ALL samples

(B-ALL), and the other containing 8 T-cell ALL

samples (T-ALL). We used HARP to perform dis-
tance-based clustering on the dataset to form two

sample clusters, and compare the results with the ones

presented in [14].

Yeast. The original dataset was published in [8]. It

contains the expression levels of 6218 yeast ORFs at 17

time points taken at 10-min intervals, which cover

nearly two full cell cycles. The dataset used here is the

subset selected according to [26] that contains 2884
genes. We preprocessed the data according to the

method suggested in [7], and used HARP to perform

pattern-based clustering to produce non-disjoint gene

clusters using the two extensions. As in [7], we treated

two genes as similar if they have complementary ex-

pression patterns in the corresponding subspace, i.e.,

the two genes constantly show opposite rise and fall

patterns across the relevant dimensions. This is ac-
complished by having two copies of each gene in the

dataset, one with the original expression values, and

the other the negation of them. This results in two

nearly identical copies of every cluster being formed. In

the results reporting in the coming sections, all dupli-

cated clusters and duplicated genes in a cluster are

removed.
4.2. Results

The complete results can be found in the ancillary

files. We summarize here some important findings.

Lymphoma. HARP was able to separate the samples

of different types to different clusters with only a small

number of errors. Some interesting clusters located at

the top two levels of the dendrogram are listed in Table

2. We investigated the importance of dimension selec-
tion in the formation of the clusters by calculating the

distance ratios A1–A3 defined as follows:

A1ðCIÞ ¼
P

xi2CI ;vj2VI ðxij � xIjÞ2=dIP
xi2CI ;vj2V ðxij � xIjÞ2=d

;

A2ðCIÞ ¼
P

xi2CI ;vj 62VI ðxij � xIjÞ2=ðd � dIÞP
xi2CI ;vj2V ðxij � xIjÞ2=d

;

A3ðCIÞ ¼
P

xi 62CI ;vj2VI ðxij � xIjÞ2=dIP
xi 62CI ;vj2V ðxij � xIjÞ2=d

:

A1 measures the increase in compactness of the cluster

due to dimension selection, A2 measures how irrelevant

are the non-selected dimensions, and A3 measures the

increase in separation between the cluster members and

other objects due to the selection. For a good cluster, A1

should be smaller than one, A2 should be greater than
one, and A3 should be larger than A1. All clusters listed

in Table 2 satisfy the three requirements, which means

the selection of relevant dimensions makes the cluster

members more distinguishable. For each cluster of

samples, we also randomly selected 100,000 sets of rel-

evant dimensions and calculated the corresponding

distance ratios. All the resulting ratios are very close to

one with standard deviations not more than 10�5, which
verify that the relevant dimensions selected by HARP

are statistically unexpected and significantly better than

random selections.
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We then examined the biological meaning of the se-
lected dimensions of the clusters. In Fig. 2 of [4], some

genes are highlighted as the signatures of some sample

types or biological processes. The genes are divided into

four regions: proliferation, germinal centre B, lymph

node, and T cell. For each cluster formed by HARP, we

sorted all the genes in descending order according to

their R values, and checked the ranks of the signature

genes. It was found that the large DLBCL cluster has
many signature genes in the proliferation region re-

ceiving high ranks, which suggests that the expression

values of the genes could potentially be used to identify

DLBCL samples. Similarly, it was found that the rest-

ing/activated T samples have a distinctive expression

pattern. The 6 samples form a clear cluster with many of

the signature genes receiving very large R values. Acti-

vated blood B, FL, and CLL samples formed three
separate clusters consisting of few samples from other

types. They all have large R values at the signature genes

at the lymph node region due to the constantly low ex-

pression, but the three types of samples were successfully

separated into different clusters according to the ex-

pression values of other relevant genes, in particular

those in the germinal centre B region.
Table 4

The distance ratios of the two final clusters and the pure T-ALL cluster

identified by HARP from the leukemia data

Samples No. of

relevant

genes

A1 A2 A3

16 B-ALL,

8 T-ALL

112 0.40 1.01 2.97

11 AML,

3 B-ALL

59 0.35 1.00 2.81

8 T-ALL 151 0.24 1.01 2.07

Table 3

The best ARI values achieved by various algorithms on the lymphoma

data

Algorithm Best ARI

HARP 0.75

PROCLUS 0.64

Kprototype 0.63

CLARANS 0.61

Hierarchical 0.49

CAST 0.48

Table 5

Comparison of the clusters identified by HARP and those reported in Chen

Algorithm Avg. no. of genes Avg. no. of time po

Cheng and Church 167 12

HARP 243 10
We also used the known sample types to evaluate the
clustering accuracy. We used adjusted rand index [28] as

the performance metric, with the maximum value of one

indicating a perfect clustering and zero indicating the

clustering is no better than a random partitioning. We

compared the best results of various projected and non-

projected clustering algorithms, including a hierarchical

method, the k-means method Kprotype [16], the

k-medoid method CLARANS [22], the CAST method
[6] designed for clustering gene expression datasets, and

the projected clustering method PROCLUS [1]. The

results (shown in Table 3) suggest that the projected

clustering methods have better performance in general,

and HARP has the highest accuracy.

Leukemia. In [14], 50 informative genes that have

very different expression patterns in the two classes are

used to build a highly accurate classifier. This suggests
that a very small number of relevant genes are enough to

distinguish the two types of samples. We therefore ini-

tialized dmin to 50 to select a small set of highly relevant

genes for each cluster. Notice that unlike setting the l
parameter of PROCLUS and ORCLUS, initializing dmin

to a certain value does not force HARP to select any

specific number of genes for each cluster. HARP is free

to select any number of genes not less than dmin. The
setting simply suggests HARP to focus on the genes with

larger R values. With this setting, HARP produced one

cluster that contained only ALL samples and the other

contained mainly AML samples with only 3 errors,

which is a mild improvement over the clustering result

presented in [14] (4 errors). The ALL and AML clusters

identified by HARP have 112 and 59 selected genes,

respectively, both with average R values of 0.95, which
indicate the extremely high distinguishing power of the

genes. By examining the dendrogram, we also found

that the 8 T-ALL samples formed its own cluster before

merging with any B-ALL samples. The pure T-ALL

cluster has 151 selected dimensions with average R value

of 0.99, which are potential signature genes for distin-

guishing T-ALL from the other two types of samples.

The distance ratios A1–A3 of the two final clusters and
the T-ALL cluster are shown in Table 4. Comparing the

ratios with those of the lymphoma clusters (Table 2), the

A1 ratios are much lower and the A3 ratios are much

higher. This indicates that dimension selection is more

beneficial to the leukemia dataset by making the clusters

more compact and more distant from each other. In

contrast, the A2 ratios are just slightly larger than one

since only a small amount of dimensions are selected for
g and Church (2000) [7] from the yeast data

ints Avg. H score Avg. score to size ratio

204 0.10

203 0.08



Table 6

One of the clusters (cluster 53, no. of genes¼ 22) identified by HARP

from the yeast data that contains a significant amount of genes from

related categories (all in late G1 phase)

Category: genes

Budding, directional growth: YDR507C

Cell cycle regulators: YPL256C, YJL187C

Chromosome, nuclear segregation: YMR076C, YDL003W,

YKL042W, YMR078C

DNA repair and recombination: YLR383W, YDR097C

DNA replication: YOR074C, YLR103C, YAR007C, YNL312W,

YDL164C, YBR088C
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each cluster, which means object distances in the non-
selected subspace are not much different from those

calculated in the input space.

Yeast. We used HARP to produce about 100 distinct

clusters and compared them with the 100 biclusters

discovered in [7]. Table 5 compares some statistics of the

two sets of clusters. The H score of a cluster is the av-

erage squared residue score defined as follows:

HI ¼
P

xi2CI ;vj2VI ðxij � xIj � xiJ þ xIJ Þ2

NIdI
; ð3Þ

where xiJ and xIJ are the row average and block average,

respectively:

xiJ ¼
1

dI

X
vj2VI

xij;

xIJ ¼
1

NIdI

X
xi2CI ;vj2VI

xij:

The lower is the H score, the more similar are the rise

and fall patterns of the expression values of different

objects. On average the clusters produced by HARP
contain more genes but fewer time points. They also

have a slightly better average squared residue score to

size (number of genes multiplied by number of time

points) ratio. Fig. 3 shows the clusters with the best

scores. According to the results, HARP was able to

identify clusters with diverse sizes and dimensionalities.

It also successfully grouped together genes with similar
Fig. 3. The clusters identified by HARP from the yeast data with the best mea

very similar expression patterns. Note that HARP is also able to cluster gene

cluster 214).
expression patterns but in opposite directions. The av-
erage size of the clusters suggests that a significant

number of genes were assigned to multiple clusters with

matched signatures.

We evaluated the biological significance of the clus-

ters by a phenotypic categorization of mRNAs that are

regulated with the cell cycle (http://yscdp.stanford.edu/

yeast_cell_cycle/functional_categories.html). Some clus-

ters were found to contain a significant amount of genes
from related categories. One such clusters is shown in

Table 6, which contains many categorized genes in the

late G1 phase, with functions ranging from budding, cell

cycle regulation, nuclear segregation to DNA replica-

tion, and repair.

It is interesting to see how similar are the clusters

produced by HARP and those reported in [7]. For each

cluster produced by HARP, we searched for a cluster
n squared residue scores. The genes in the same cluster are seen to have

s that constantly show opposite rise and fall patterns (see, for example,

http://yscdp.stanford.edu/yeast_cell_cycle/functional_categories.html
http://yscdp.stanford.edu/yeast_cell_cycle/functional_categories.html
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reported in [7] with the highest Jaccard index. For every
pair of clusters, we computed the Jaccard index by di-

viding the size of the intersection of the two sets of genes

by the size of their union. An index value of one indi-

cates two identical sets of genes, while an index value of

zero indicates the two sets have no genes in common.

The average, maximum and minimum Jaccard index so

computed are 0.2102, 0.5872, and 0.0051, respectively.

The low values suggest that the two sets of clusters are
quite different, even they both have good average

H scores. Although the two sets of results are not di-

rectly comparable due to the use of different parameter

values (reflected by the difference in average cluster size

and dimensionality), we believe the two methods do

identify some clusters missed by the other, and that

there are rooms for improvements in the topic of pat-

tern-based clustering for gene expression data.
5. Discussions

The results show that HARP is able to identify sta-

tistically and biologically meaningful clusters without

relying on some user parameters whose proper values

are hard to determine. It can thus be used to automat-
ically identify some interesting clusters from a large

number of datasets for later, more labor-intensive

analysis.

The object assignment extension discovered some

interesting non-disjoint clusters from the yeast dataset,

but in general some important clusters could be missed if

their structures are not captured by some disjoint clus-

ters before object assignment. We propose two future
extensions of HARP for identifying these clusters: to

allow each cluster to be merged with multiple clusters,

and to produce disjoint clusters on different small data

samples, and then reassign other objects to the clusters.

Both approaches allow the discovery of more projected

structures.

The quality of the yeast clusters produced by HARP

is comparable to those produced by the Cheng and
Church algorithms, which were designed to optimize the

pattern-based objective score. This suggests that non-

projected clustering methods that assume distance-based

object similarity can also be used in pattern-based

clustering. Actually, in non-projected clustering, it can

be easily proved that by standardizing a dataset such

that each row has zero sum and unit sum of squares, the

Euclidean distance between two objects in the trans-
formed data is equal to 2� 2r, where r is the Pearson

correlation between the objects in the original data [5].

This means the Euclidean distance between two objects

in the transformed data reflects the dissimilarity between

the rise and fall patterns of the objects in the original

data. The pattern-based clustering problem is thus

transformed to a distance-based clustering problem by
the normalization process. The situation is more com-
plicated in the projected case in that each cluster has its

own set of relevant dimensions. As discussed in Section

3.6, normalization should be performed based on the

projected values on such dimensions only. The trickiest

thing is that the real relevant dimensions are unknown

when normalization is performed. It becomes even more

complicated when clusters are non-disjoint, at which a

single projected value is subject to the normalization
process of all the clusters that it is involved. We leave the

more advanced methods of adaptive subspace normali-

zation as a future work on the topic.

A well-known weakness of hierarchical clustering

algorithms is the deterministic property: once an object

is assigned to a cluster, it cannot be reassigned to an-

other cluster. The object reassignment process per-

formed at the end of clustering helps redistribute each
object to the most similar cluster, but it is unable to

correct wrong merges during the early stage of cluster-

ing. We have attempted to perform an object reassign-

ment at the end of each threshold loosening step, but no

significant accuracy improvements were observed, and

the clustering process was severely prolonged. We will

try to integrate the threshold loosening mechanism into

other more efficient and non-deterministic clustering
methods.
6. Conclusion

In this paper, we analyzed the major challenges of

the projected clustering problem, and suggested some

potential weaknesses of some existing projected clus-
tering algorithms. Based on the analysis, we proposed a

new projected clustering algorithm HARP that does not

rely on user inputs in determining the relevant dimen-

sions of clusters, which makes it easy to apply to ap-

plications where the correct values of the parameters are

unknown. HARP makes use of the relevance index,

histogram-based validation and dynamic threshold

loosening to dynamically adjust the merging require-
ments of clusters according to the current clustering

status. It also allows users to input some available do-

main knowledge, and it can be extended to perform

pattern-based clustering and produce non-disjoint

clusters by adaptive mean centering and post-clustering

object assignment, respectively. The experimental re-

sults on real microarray datasets show that HARP

works well in situations where object similarity is based
on either distance or expression pattern, and where

disjoint or non-disjoint clusters are required. The clus-

ters identified are both statistically and biologically

meaningful. Future works include improving the speed

performance of HARP and studying some advanced

normalization techniques for projected pattern-based

clustering.



K.Y. Yip et al. / Journal of Biomedical Informatics 37 (2004) 345–357 357
Acknowledgments

The research of DWC is supported by a grant from

the Research Grant Council of Hong Kong. (Project

No.: HKU 7141/03E). K.H.C. is supported in part by

NIH Grant K25 HG02378 from the National Human

Genome Research Institute and NSF Grant DBI-

0135442.
References

[1] Aggarwal CC, Procopiuc C, Wolf JL, Yu PS, Park JS. Fast

algorithms for projected clustering. In: ACM SIGMOD Interna-

tional Conference on Management of Data. 1999.

[2] Aggarwal CC, Yu PS. Finding generalized projected clusters in

high dimensional spaces. In: ACM SIGMOD International

Conference on Management of Data. 2000.

[3] Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic

subspace clustering of high dimensional data for data mining

applications. In: ACM SIGMOD International Conference on

Management of Data. 1998.

[4] Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald

A, et al. Distinct types of diffuse large B-cell lymphoma identified

by gene expression profiling. Nature 2000;403:503–11.

[5] Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D,

Levine AJ. Broad patterns of gene expression revealed by

clustering analysis of tumor and normal colon tissues probed by

oligonucleotide arrays. Proc Natl Acad Sci USA 1999;96:6745–50.

[6] Ben-Dor A, Yakhini Z. Clustering gene expression patterns. In:

Proceedings of the Annual International Conference on Compu-

tational Molecular Biology. 1999.

[7] Cheng Y, Church GM. Biclustering of expression data. In:

Proceedings of the Eighth International Conference on Intelligent

Systems for Molecular Biology. 2000.

[8] Cho RJ, Campbell MJ, winzeler EA, Steinmetz L, Conway A,

Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D,

Lockhart DJ, Davis RW. A genome-wide transcriptional analysis

of the mitotic cell cycle. Mol Cell 1998;2:65–73.

[9] De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau

Y. Adaptive quality-based clustering of gene expression profiles.

Bioinformatics 2002;18(5):735–46.

[10] Dembele D, Kastner P. Fuzzy C-means method for clustering

microarray data. BioInformatics 2003;19(8):973–80.

[11] Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis

and display of genome-wide expression patterns. Proc Natl Acad

Sci USA 1998;95:14863–8.

[12] Eppstein D. Fast hierarchical clustering and other applications of

dynamic closest pairs. In: SODA: ACM-SIAM Symposium on

Discrete Algorithms. 1998.
[13] Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB,

Storz G, et al. Genomic expression programs in the response of

yeast cells to environmental changes. Mol Biol Cell 2000;11:4241–

57.

[14] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M,

Mesirov JP, et al. Molecular classification of cancer: class

discovery and class prediction by gene expression monitoring.

Science 1999;286(5439):531–7.

[15] Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised

growing neural network for clustering gene expression patterns.

BioInformatics 2001;17(2):126–36.

[16] Huang Z. Clustering large data sets with mixed numeric and

categorical values. In: The First Pacific-Asia Conference on

Knowledge Discovery and Data Mining. 1997.

[17] Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF,

et al. The transcriptional program in the response of human

fibroblasts to serum. Science 1999;283:83–7.

[18] Kluger Y, Basri R, Chang JT, Gerstein M. Spectral biclustering of

microarray cancer data: co-clustering genes and conditions.

Genome Res 2003;13(4):703–16.

[19] Lazzeroni L, Owen A. Plaid models for gene expression data. Stat

Sinica 2002;12:61–86.

[20] Lukashin AV, Fuchs R. Analysis of temporal gene expression

profiles: clustering by simulated annealing and determining the

optimal number of clusters. Bioinformatics 2001;17(5):405–14.

[21] Matei D, Graeber TG, Baldwin RL, Karlan BY, Rao J, Chang

DD. Gene expression in epithelial ovarian carcinoma. Oncogene

2002;21:6289–98.

[22] Ng RT, Han J. Efficient and effective clustering methods for spatial

datamining. In: 20th International Conference onVery LargeData

Bases, September 12–15, 1994, Santiago, Chile proceedings, 1994.

[23] Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M,

McLaughlin ME, et al. Prediction of central nervous system

embryonal tumour outcome based on gene expression. Nature

2002;415:436–42.

[24] Procopiuc CM, Jones M, Agarwal PK, Murali TM. A monte carlo

algorithm for fast projective clustering. In: ACM SIGMOD

International Conference on Management of Data. 2002.

[25] Quinlan JR. C4.5 Programs for Machine Learning. Morgan

Kaufmann; 1993.

[26] Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM.

Systematic determination of genetic network architecture. Nat

Genet 1999;22:281–5.

[27] Yang J, Wang H, Wang W, Yu P. Enhanced biclustering on

expression data. In: Proceedings of the IEEE Third Symposium

on Bioinformatics and Bioengineering. 2003.

[28] Yeung K, Ruzzo W. An empirical study on principal component

analysis for clustering gene expression data. Bioinformatics

2001;17(9):763–74.

[29] Yip KYL. HARP: a practical projected clustering algorithm for

mining gene expression data. Master’s thesis, The University of

Hong Kong, Pokfulam Road, Hong Kong, January 2004.

Available from: http://www.csis.hku.hk/~ylyip/papers/thesis.pdf.

http://www.csis.hku.hk/~ylyip/papers/thesis.pdf

	Identifying projected clusters from gene expression profiles
	Introduction
	Related work
	The HARP Algorithm
	Relevance index, cluster quality, and merge score
	Validation of similarity scores
	Dynamic threshold loosening
	The complete algorithm
	Complexity analysis
	Extensions

	Experiments
	Datasets
	Results

	Discussions
	Conclusion
	Acknowledgements
	References


