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In high-dimensional data, the similarity between different objects of a cluster may

only be reflected in a certain subspace. In microarray gene expression data, this

phenomenon could occur when a set of co-regulated genes have similar expression

patterns only in a subset of the testing samples in which certain regulating factors

are present. As a result, the expression patterns of the genes could appear to be

dissimilar in the full input space. Traditional clustering algorithms that utilize

such similarity values in determining object similarity might therefore fail to

identify the clusters.

In recent years a number of algorithms have been proposed to identify this

kind of projected clusters. Many of them require the input of some parameter

values that are hard for users to supply, and clustering accuracy can be seriously

affected if incorrect values are used. In gene expression data analysis it is rarely

possible to obtain precise estimations of the parameter values, and this causes

practical difficulties in applying the algorithms to real data.



This study provides a thorough analysis of the proposed projected clustering

algorithms and suggests some reasons for their heavy parameter dependency.

Based on the analysis, a new algorithm is proposed to exploit the clustering

status in adjusting the internal thresholds dynamically without the assistance

of user parameters. This allows automatic processing of large amounts of data

without user intervention. The algorithm is also extended to handle pattern-

based clustering and the production of non-disjoint clusters, which are useful

when analyzing gene expression datasets that involve samples taken at different

time points.

The results of extensive experiments on both synthetic and real data show

that the new algorithm outperforms some traditional and projected clustering

algorithms in terms of both accuracy and applicability. It is also capable of

identifying clusters that make both statistical and biological sense.
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Chapter 1

Introduction

The main theme of this thesis is to study the feasibility of extracting use-

ful information from gene expression profiles by a relatively new data mining

approach known as projected clustering. This is a multi-disciplinary topic, in-

volving research efforts from areas such as data mining, applied mathematics,

genetics and genomics. A complete introduction to the topic may require a few

dictionary-sized books, which obviously cannot fit into this thesis. Rather, this

introductory chapter is being kept as concise as possible to cover just enough

material for the understanding of this text. Readers interested in a deeper intro-

duction of the topic are advised to read the references from the corresponding

areas.

This chapter consists of two main parts. The first part provides a short

overview of the objectives and methods of data mining, and quickly moves to

the topic of clustering and finally projected clustering. The second part starts

with an introduction to bioinformatics in general, and then narrows down to

microarray technology and gene expression profiles, and finally focuses on some

clustering methods proposed for gene expression profile analysis. The last section

of this chapter describes the outline, main contributions and scope of this thesis.

1



CHAPTER 1. INTRODUCTION 2

1.1 Data Mining

An era has come when the rate of data generation is much higher than the

maximum data analyzing speed of human experts. There is a great need to

extract a succinct set of interesting patterns from the sea of data systematically

and automatically so that people can benefit from it. This process is known as

data mining. Just like mining precious gold or silver from inexpensive rocks and

sand, data mining “digs out” valuable information from the numerous otherwise

useless data. It is a complex multi-step knowledge discovery process that involves

1) data cleaning, 2) data integration, 3) data selection, 4) data transformation,

5) data mining, 6) pattern evaluation and 7) knowledge presentation [36]. The

narrowed meaning of data mining in step five is the application of certain mining

algorithms to extract information from preprocessed data. This is the main

focus of this thesis, although some issues related to the other steps will also be

discussed. In the remaining of this text, the narrowed meaning of data mining

is assumed.

Data mining has some important characteristics that derive a number of

requirements for the mining algorithms:

• The amount of data to be mined is huge, so all practical mining algorithms

should be efficient and scalable.

• As new data is evolving from time to time, the mining process should be

largely automated and involve minimum user intervention. It is necessary

and absolutely reasonable to ask users to evaluate the interestingness of the

mined patterns, but requiring frequent human feedback during the mining

process is generally unacceptable.

• Human users can only interpret results of reasonable sizes, so mining algo-

rithms should intelligently select the most interesting results to report.

• To further assist users to interpret the results, graphical visualization tech-
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niques may be used to display them in a more manageable and intuitive

fashion.

Each mining algorithm assumes some types of patterns to be mined from

data, but the actual patterns are not known before the mining process. For

example, in association rule mining [6], the association rules to be mined are

patterns in the form A ⇒ B, which means there is a high support and confidence

that when the items in itemset A occur, the items in itemset B also occur. The

actual association rules (i.e., the items in A and B of each rule) that exist in a

dataset are, however, not known to users.

There are a few popular data mining approaches, including association rules

mining [6], classification [53], clustering [45], emerging pattern mining [24], and

sequence mining [7]. The approaches are complementary to each other and have

different applications as they work on different types of data, require different

amount of domain knowledge, and produce different kinds of results. Clustering

is the focus of this thesis. As to be explained later, it has some properties that

make it suitable for gene expression data analysis.

1.2 Clustering

Clustering is a process to group similar objects together. Before directly

jumping into the detailed discussion of clustering, it is instrumental to spend

some time on the format of data that can be clustered. In the following defi-

nitions, the preferred terms of some concepts appear first and some alternative

terms that have the same or similar meanings are listed in brackets. The pre-

ferred terms are used most frequently in this thesis, while the alternative terms

are occasionally used when they can better illustrate some ideas.

Each dataset to be clustered is represented by a set (table, matrix) that con-

sists of objects (records, rows, tuples, instances). Each object is described by its
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projected values (projections, attribute values) on the different dimensions (at-

tributes, columns, features) of the dataset. Unless otherwise stated, all datasets

are assumed to contain continuous numeric attributes with no missing values.

This means all projected values are real numbers.

A cluster is defined as a non-empty subset of the objects, which are called

the members of the cluster. The centroid of a cluster is a virtual object with its

projected value on each dimension equal to the arithmetic mean of the projected

values of all the cluster members on the dimension1. Two clusters are disjoint

(non-overlapping) if they contain no common objects, and a set of clusters is

disjoint if all clusters in it are pairwise disjoint. A clustering algorithm is said

to produce disjoint clusters if the clusters that it produces are always disjoint.

Otherwise, the algorithm is said to produce non-disjoint (overlapping) clusters,

even the clusters are not always non-disjoint. Some objects that do not fit into

any cluster can be left unclustered. They are called the outliers of the dataset,

which are reported on a separate outlier list.

The goal of clustering is to partition the objects into clusters so that objects

in the same cluster are similar to each other, but dissimilar to objects not in

the cluster. The similarity between two objects is measured by a similarity func-

tion2, which specifies the properties of the clusters to be formed. Some commonly

used similarity functions include Lm (Minkowski) distance, cosine correlation and

Pearson correlation. The similarity between two clusters can be computed as the

similarity between the most similar (single link) or the most dissimilar (complete

link) objects in the two clusters, the average of all inter-cluster object similar-

ities (average link), or the similarity between the two centroids (centroid link).

Depending on the particular application need, other object/cluster similarity

functions can also be defined.
1In practice, some clustering algorithms do sometimes produce empty clusters. The centroid

of an empty cluster is represented by the null object, which is handled by some special logic of
the algorithms.

2In this thesis, we will not make a distinction between similarity functions and dissimilarity
functions.
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A huge number of clustering algorithms have been proposed, which probably

exceeds the number of algorithms proposed for all other data mining approaches.

The clustering algorithms can be briefly classified according to their ways of

cluster identification:

• Hierarchical algorithms [45]: there are two main types, agglomerative and

divisive. Agglomerative algorithms treat each data object as a singleton

cluster. The algorithms repeatedly identify the two most similar clusters

and merge them into a larger cluster until certain stopping criteria are

reached. Conversely, divisive algorithms put all objects into a single clus-

ter initially. Each time a cluster is divided into two smaller clusters so

that dissimilar objects are separated to different clusters. In general ag-

glomerative algorithms are more popular as divisive algorithms could have

exponential time complexity [45]. In this thesis, when the term “hierarchi-

cal clustering algorithm” is used alone, it implicitly means “agglomerative

hierarchical clustering algorithm”.

• Partitional algorithms: these algorithms select some seeds as the represen-

tatives of the clusters. Every object in the dataset is assigned to the most

similar seed to form clusters. The goodness of the clusters (and thus the

seeds) is evaluated by an objective function. Different sets of seeds are

tried, and the set that yields the best objective function value (objective

score) is reported. There are two major types of partitional algorithms:

k-means [38] and k-medoids [55]. They differ by the choice of seeds: k-

means algorithms use centroids as seeds, while k-medoids algorithms select

objects from the dataset as seeds.

• Density-based algorithms [28]: this kind of clustering algorithms regards

a cluster as an arbitrarily shaped structure containing a high density of

objects. The algorithms usually determine a small high-density region as

the initial cluster, and then progressively expand the cluster by including

objects in the neighboring dense regions into the cluster.
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• Model-based algorithms [29]: these algorithms construct statistical models

for clusters, and try to fit the data objects into the models to deduce the

best parameter values to use.

There are also many other clustering algorithms that are variations or hy-

brids of the above classical algorithms. Besides the above generic categories,

special clustering algorithms have also been invented to address many impor-

tant issues, such as fuzzy clustering [45], limitation of memory [73], clusters of

irregular shapes [33], datasets with categorical [34] or mixed types [41] of at-

tributes, outliers and missing values handling [45] and visualization of clustering

results [10]. Some of these issues will be discussed later.

For there are so many kinds of algorithms, there must be some ways to

compare the effectiveness of different algorithms on certain applications. This

can be done by theoretical reasoning and empirical studies. In the former way,

the characteristics of each algorithm are matched against the data properties and

specific requirements of the application. For example, in later parts of this thesis,

theoretical reasoning will be used to show that projected clustering algorithms

are in theory superior to some other kinds of clustering algorithms in detecting

clusters in high dimensional data.

The other effectiveness indicator is the experimental results. Normally both

synthetic and real datasets are used to test the algorithms. Synthetic datasets,

generated according to the assumed data models, capture the most crucial data

properties that the clustering algorithms have to be able to handle, including

those properties that are less commonly found in real datasets. On the other

hand, real datasets are used to detect any discrepancies of the data models

from the actual data characteristics. They also test the stability, usability and

efficiency of the algorithms in real situations.

No matter synthetic or real datasets are used, there are two basic techniques

to evaluate the clustering results (i.e., the performance of a clustering algorithm
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on a particular dataset). The two techniques are called internal validation and

external validation. Internal validation concerns to what degree the clusters

produced fit the assumed model. For example, in the k-means model [38], each

cluster is a spherical structure with member objects close to the centroid. A

natural evaluation function for internal validation is thus the average within-

cluster distance to centroid. The better (smaller in this case) is the evaluation

score, the more likely the model fits the data and the algorithm produces clusters

according to the model.

In external validation, some domain knowledge about the dataset is utilized

to evaluate the clustering results. For example, some datasets contain known

“class labels” of data objects, such as the object types assigned by a domain

expert. These labels suggest the members of the desired clusters, which can be

used as a “gold standard” to evaluate the clusters formed by an algorithm. The

more similar are the two sets of clusters (measured by some statistical functions),

the more likely the algorithm works well in the particular application. It should

be noted, however, that the class labels are only used in result evaluation but do

not participate in the clustering process.

1.3 Projected Clustering

In recent years, a special branch of clustering problems called projected

clustering has been receiving a lot of attention from various communities due

to its ability to analyze high-dimensional datasets, which are very common in

some areas. In projected clustering, clusters exist in subspaces of the input

space defined by the dimensions of the dataset. The similarity between different

members of a cluster can only be recognized in the specific subspace. A dataset

can contain a number of projected clusters, each forms in a distinct subspace.

To illustrate the idea of projected clusters, consider the data points in Fig-

ure 1.1a. Although the distribution of points suggests some underlying struc-
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X

Y

(a) A set of 2D points.

X

Y
Cluster 1
Cluster 2
Cluster 3

(b) 1-D projected clusters.

Figure 1.1. An example illustrating the idea of projected clusters.

Stud. Lang. Bio. Comp. Music

1 89 50 82 88

2 90 70 66 91

3 91 83 50 90

4 70 90 92 76

5 55 65 90 63

6 79 54 99 50
(a) Data records.

Stud. 1 2 3 4 5

2 26

3 46 21

4 47 41 50

5 46 51 63 32

6 43 61 61 46 31
(b) Distance between different records.

Figure 1.2. Projected clusters in a virtual examination score dataset.

tures, it is hard to unambiguously partition the points into clusters. The hidden

relationship between the points is revealed in Figure 1.1b, where the points of

different clusters are given different shapes. By projecting the points onto ap-

propriate subspaces (clusters 1 and 2 onto the one-dimensional space formed by

X, cluster 3 onto the one-dimensional space formed by Y), the cluster structures

become apparent.

A relational example is shown in Figure 1.2a, which contains the examina-

tion scores of six students in four subjects. Figure 1.2b shows the dissimilarity

between each pair of students based on Euclidean distance. Again, it is not easy

to observe the hidden clusters. By identifying the proper subspaces, students 1-3

are found to form a cluster that has special talent in language and music, while

students 4-6 form another cluster that is good at computer.
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Projected clusters can appear in various kinds of real data. The projected

clustering approach has been successful in application areas including computer

vision [59], food categorization [48], and gene expression data analysis (e.g. [18]).

It has also been suggested that projected clustering has potential applications in

e-commerce [68].

We now define projected clusters more formally3. Given a dataset D with

N objects and a set V of d input dimensions, a projected cluster CI contains

NI objects and is defined in a dI -dimensional subspace formed by the set VI of

dimensions, where VI ⊂ V . In the subspace, the members of CI are similar to

each other according to a similarity function, but dissimilar to other objects not

in CI .

Since a few new concepts are considered, we need to introduce some more

terms for the sake of discussion. dI is called the dimensionality of cluster CI ,

which is the size of the set of relevant dimensions VI of the cluster. In [4], the

dimensions in VI are along the directions of the principal components of CI ,

which are not necessarily elements of V . As in most other studies (e.g. [3, 59]),

we adopt a more restrictive definition that requires each VI to be a subset of

V as the clustering results are more understandable by human. Based on this

definition of relevant dimensions, the set of irrelevant dimensions of cluster CI

is defined as the set V − VI . A dimension can be relevant to zero, one, or more

clusters.

A projected cluster is usually modeled as a combination of local distribu-

tions along the relevant dimensions and global distributions along the irrelevant

dimensions. This means the projected values of the cluster members on the rel-

evant dimensions form some patterns unique to the cluster, while the projected

values on the irrelevant dimensions are indistinguishable from the values from

other clusters to which the dimensions are also irrelevant. Certainly, the more

irrelevant dimensions a cluster has, the less similar are its members in the full
3A list of symbols used in this thesis can be found in Appendix B.
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input space. It has been shown in [15] that under a wide variety of conditions,

the distance to the nearest object approaches the distance to the farthest object

as the number of dimensions on which the values are generated from a global

distribution increases. The effect can become quite severe when there are only

10-15 dimensions, much lower than the dimensionalities of the high dimensional

datasets to be considered in this thesis. This implies that the similarities be-

tween different objects of the same cluster due to the relevant dimensions can

be washed out by the irrelevant dimensions. In other words, the members of a

cluster can hardly be discovered if the relevant dimensions are not identified.

Projected clusters that are defined according to some domain knowledge

(e.g. known class labels) are called the real clusters of the dataset and the cor-

responding relevant dimensions the real relevant dimensions of the real clusters.

The general term clusters will be used to mean the object groups identified by a

clustering algorithm. We choose the simple term “cluster” instead of “projected

cluster” due to the frequent occurrence of the concept in the text and the fact

that a non-projected cluster is actually a special case of a projected cluster with

all input dimensions being relevant to it. A cluster is correct if it contains objects

all from the same real cluster, and incorrect otherwise.

For each cluster, a projected clustering algorithm determines its relevant

dimensions by finding a subspace in which the cluster members are similar to

each other, but dissimilar to other objects outside the cluster. For simplicity,

clustering algorithms that have the ability to identify the relevant dimensions of

each cluster are called generically the projected algorithms. All other clustering

algorithms are termed the non-projected algorithms.

The dimensions regarded as relevant to a cluster by a projected algorithm are

called the selected dimensions of the cluster. When object similarity is measured

by a distance metric, a dimension is likely relevant to a cluster if the projections

of the cluster members on the dimension concentrate at a specific small region

containing few or no projections of other objects. The region is thus a signature
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of the cluster, which can be used to identify the cluster members. We call this

kind of clustering that measures object similarities based on a distance function

a distance-based clustering. In Figure 1.2, the cluster formed by the first three

students has signature intervals [89, 91] and [88, 91] along the “language” and

“music” dimensions respectively. The cluster in this simple example is an ideal

one in that no other students got some scores within these signature regions.

In this case, a single dimension (either language or music) is enough to unam-

biguously distinguish the cluster members. In reality, due to deviations from the

ideal model and the presence of noise, cluster members can only be identified by

cross-referencing a few relevant dimensions. For these imperfect clusters, each

dimension can be assigned a separate relevance value to indicate how well it helps

identify the cluster members.

When other kinds of similarity functions are used, the relevant dimensions

could have other meanings. For example, in [68], a set of objects is similar if

they have a coherent rise and fall pattern of projections across different dimen-

sions. We refer to such a clustering process a pattern-based clustering. The

relevant dimensions of a cluster correspond to the dimensions across which the

objects exhibit similar patterns. Unlike distance-based clustering in which the

relevance of each dimension can be evaluated individually, the relevant dimen-

sions in pattern-based clustering must be identified in groups. In Chapter 3,

we will discuss how a pattern-based clustering problem can be transformed to a

distance-based one by adaptive transformation.

Before moving on, it is needed to emphasize the difference between projected

clustering and feature selection. Although both concern the selection (and possi-

bly construction) of important features, feature selection defines a feature space

for the whole dataset, while projected clustering identifies a possibly different

subspace for each cluster. Due to the difference, feature selection is performed

prior to the actual data mining process4, while subspace finding is performed
4Even in the wrapper model [44], the feature set is fixed before starting any run of the

induction algorithm.
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during the projected clustering process. Feature selection can be performed as

a preprocessing step before projected clustering, but it alone cannot solve the

projected clustering problem.

1.4 Gene Expression Profiles

This thesis does not only concern the technical issues of projected clustering,

but also its specific application to gene expression data analysis. In this section

we give a brief introduction to microarray technology and gene expression profiles.

A recent trend of genetics research has been moving from focusing on the

functions of a particular gene to studying macroscopically the relationship be-

tween different genes in the whole genome. One technological breakthrough that

leads to the trend is the invention of microarrays [62]. A microarray is a small

chip (about one and a half inch wide) that contains an array of chemical reaction

spots. The chemicals in each spots are designed to react with some different

chemicals in the test samples. By using proper dyes, the amount of reacted

chemicals in each spot can be quantified by measuring the light intensity at

some specific frequencies.

Microarray technologies can be classified into a number of main types, in-

cluding spotted arrays, short oligonucleotide arrays (Affymetrix GeneChips),

long oligonucleotide arrays (Agilent), fibre optic arrays (Illumina) and serial anal-

ysis of gene expression (SAGE) [25]. Among them spotted arrays and Affymetrix

GeneChips are the most widely used technologies. The former has the cDNA or

oligos spotted on biochemically-treated solid surfaces such as glass and nylon,

while the latter has the oligos synthesized in situ using photolithographic tech-

niques.

One important application of microarrays is measuring the activity of differ-

ent genes in a cell sample. During transcription, active genes produce messenger
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RNA (mRNA) molecules that are complementary to one of the two strands of

the double helix. Complementary DNA (cDNA) can be produced from the un-

stable mRNA molecules for measurement. DNA chips are designed in such a way

that each spot contains a DNA sequence that can identify the cDNA molecules

produced by a specified gene. When a cell sample is eluted on the surface of

the array, the cDNA molecules of each gene will be bound to the complementary

sequences of the corresponding spots. The quantity measured from each spot

indicates the amount of cDNA produced, which in turn indicates the activity

of the gene. The set of quantities obtained from the whole array is called an

expression profile of the sample.

Depending on the technology employed, each quantity in a gene expression

profile represents either the absolute expression level (e.g. Affymetrix GeneChips)

or a relative expression ratio (e.g. cDNA microarrays). Due to the complex multi-

step experimental procedures, gene expression profiles may contain missing and

noise values. It is therefore a must to perform proper data cleaning, selection

and transformation before carrying out any kind of data analysis.

In a typical gene expression experiment, the expression profiles of tens or

even hundreds of samples are combined to form a large dataset, each measuring

the activity of thousands of genes. The different samples may be taken from

different kinds of cells (e.g. normal and tumor cells from the same patient), the

same kind of cells subject to different external stimuli or taken at different time,

etc. When performing analysis, a gene expression dataset is usually organized as

a data matrix with the genes as the rows and the samples as the columns.

1.5 Clustering Gene Expression Profiles

Clustering is a popular data mining technique for extracting information

from gene expression profiles. One major reason for this popularity is that clus-

tering requires very little prior knowledge of the data, which is a big advantage
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for the application since the current knowledge on macroscopic gene interactions

and pathways is still very limited.

We can link up some terms commonly used in this context to the ones

introduced in Section 1.2. The rows of a gene expression dataset correspond to

the genes (in some situations, they are more specifically referred to as probes,

expressed sequence tags (ESTs) or open-reading frames (ORFs), but we will not

make the distinction here). Each column corresponds to a sample (condition,

tissue or time point) and each projected value is called an expression value.

Interestingly, in gene expression data analysis, not only are clusters of genes

meaningful, clusters of samples also have practical values in some applications.

Whenever clustering is performed on samples, we will describe the clustering

process as applying on the transpose of the dataset. In both cases, an object

always refers to a row and a dimension always refers to a column in the resulting

dataset. A gene, however, is represented by a row in the original dataset, but a

column in the transposed dataset.

A large variety of traditional and novel clustering approaches has been used

to generate many kinds of interesting clusters from gene expression profiles. Some

recent studies include [13, 23, 26, 39, 40, 51, 63, 64]. The goal of these clustering

methods is to partition similar objects (genes or samples) into clusters. Sample

clustering is common in tumor studies for identifying tumor subtypes [8, 32, 52,

57]. Gene clustering has been used to predict groups of genes that have similar

functions or are co-regulated [20, 30, 43]. It has also become very popular to

cluster both samples and genes individually and visualize the results in a single

figure [8].

All these approaches assume object similarity is measured in the input space

formed by all the dimensions of a dataset. For example, when samples are being

clustered, the similarity between two samples is based on the expression values

of all the observing genes in the two samples. It has been pointed out that
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gene expression data may exhibit some checkerboard structures [47, 58]. Each

block in the checkerboard is defined by a subset of genes and a subset of samples

where the genes have similar expression patterns in the samples, which matches

the definition of a projected cluster. The complexity and high dimensionality

of gene expression datasets also make the existence of projected clusters highly

probable. We are therefore interested in studying the feasibility of applying

projected clustering on gene expression data.

1.6 Outline, Contributions and Scope of the Thesis

The remaining of this thesis is dedicated to the feasibility study. In Chap-

ter 2 we review the previous works on projected clustering in the computer

science and bioinformatics communities. Some clustering algorithms were de-

veloped specifically for analyzing gene expression profiles, while others are for

general purpose. It is observed that many of the algorithms have a common

potential problem in that they require users to input some hard-to-determine

parameter values to assist the clustering process. The usefulness of the cluster-

ing results depends very much on the correctness of the parameter values being

used. This is undesirable when working on gene expression profiles, since the

datasets are formed by complex and mostly unknown biological processes, which

makes the determination of correct parameter values extremely difficult.

In view of the problem, we will describe a new projected clustering algorithm

in Chapter 3 that does not rely on user parameters. Obviously, this could never be

achieved without making certain assumptions on the characteristics of clusters.

We will show, however, that the assumptions being made by the algorithm are

reasonable. In order to test the effectiveness and efficiency of the algorithm, we

performed various kinds of experiments on both synthetic and real datasets, of

which the results will be presented in Chapter 4. When presenting the results,

some properties of the new clustering algorithm and some observed issues will
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also be discussed.

Chapter 5 is devoted to some overall discussions on the study, and to point

out potential future works on the topic. Finally, Chapter 6 summarizes the whole

thesis and draws the conclusions of the study.

The main contributions of this thesis are:

• Introducing a new projected clustering algorithm that does not rely on user

parameters, which makes automatic analysis of a large amount of data with

little domain knowledge feasible.

• Providing a rich set of experimental results on synthetic and real datasets,

including some comparison results between various projected and non-

projected algorithms under many different situations.

• Providing a thorough survey of the many projected clustering methods

proposed in the computer science and bioinformatics communities.

• Studying the possibility of transforming a pattern-based clustering prob-

lem to a distance-based clustering problem, so that a single distance-based

algorithm can handle both.

Although the ultimate goal of this study is to discover previously unknown

relationships between different genes, this thesis concentrates on the technical

issues related to the discovery of such relationships instead of the discoveries

themselves. Interested parties are encouraged to try out the new algorithm in

their own studies.

We have put the greatest effort in covering most existing projected clustering

approaches in Chapter 2, but it is quite possible that some excellent approaches

are still out of the list. Also, due to space limitation, we need to omit some details

of each approach. Nonetheless, we believe the survey does have an adequate

breadth and depth for the purpose of an overview of the topic.
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In Chapter 3 we will describe the kind of projected clusters that our new

algorithm tries to identify. We will then compare it mainly with the other al-

gorithms with similar (or related) definitions of projected clusters. We make

no attempts to claim that our algorithm performs better or equally well in all

aspects as the other algorithms. The new algorithm does, however, successfully

avoid a major usability problem that is common in most of the comparing algo-

rithms. It also performs reasonably well in some other important aspects. We

suggest to use the new algorithm as an automatic scanning of data to produce

some initial clusters for inspection. More labor-intensive techniques can then be

applied to extract deeper information from the datasets of which the clusters

produced by the new algorithm appear to be interesting.



Chapter 2

Literature Review

In this chapter we review the previous studies on identifying clusters in

subspaces. In Chapter 1, all these clusters are named “projected clusters”. In the

literature, different names have been given to these clusters, including subspace

clusters, projected clusters, and biclusters. Each name is associated with a set of

terms that describe the various concepts introduced in Chapter 1. For example,

biclusters are usually described in terms of their “rows” and “columns” instead

of their constituent “objects” and “relevant dimensions”. For unity, we will stick

to our preferred terms introduced in Chapter 1 as far as possible, and use other

terms only when they give a much clearer meaning.

This chapter starts with three sections, featuring three closely related yet dif-

ferent research problems corresponding to the three names listed above: subspace

clustering, projected clustering and biclustering. As the names imply, subspace

clustering refers to finding clusters in subspaces, projected clustering refers to

finding clusters that are projected onto some subspaces and biclustering refers to

finding clusters constituted by both a subset of rows and a subset of columns. As

far as we know, there exist no formal definitions of the three terms that reflect

their differences. Based on our observations, we suggest to differentiate the three

terms according to the following criteria:

18
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• In subspace clustering and projected clustering, there is a primary clus-

tering target. Subspace finding is merely to assist the identification of the

relationship between different objects. For instance, in Figure 1.1, a cluster

is clearly defined as a group of points (instead of a group of axis). Similarly,

the clustering target in Figure 1.2 is the students instead of the subjects.

In contrast, there is no primary clustering target in biclustering and both

rows and columns are treated equally.

• In subspace clustering and projected clustering, the similarity between two

objects is usually computed by a distance metric. A distance value is com-

posed of the individual distance components along each dimension. This

allows the relevance value of each dimension to be evaluated separately. In

biclustering, there is a large variety of ways to calculate object similarity,

most of which involve the rise and fall pattern of projected values. The

relevance values of different dimensions usually depend on each other and

cannot be evaluated individually.

• Subspace clustering algorithms search for and report all clusters that sat-

isfy certain requirements, while most projected clustering and biclustering

algorithms report only a small set of clusters that have the best quality.

This classification is not rigid in that exceptions can always be found. Nev-

ertheless, it does reveal some fundamental options when defining clusters and

clustering problems. It also provides a systematic organization for this chap-

ter. As indicated by the title, this thesis focuses on projected clustering, which

according to the above classification, has a primary clustering target, assumes

a distance-based similarity, and produces a small set of high-quality clusters.

However, pattern-based similarity and non-disjoint clusters are also desirable

when working on certain types of gene expression profiles. We will discuss how

a projected clustering algorithm can be extended to provide the functionality.

The last section of this chapter provides a brief summary of all the discussed
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problems and algorithms. It also motivates the development of a new algorithm

by discussing some potential usability issues when applying the algorithms on

real data.

2.1 Subspace Clustering

A subspace cluster is defined in a high-density region in the subspace formed

by the relevant dimensions. The density is calculated as the number of objects

per unit size of the region. As in all density-based clustering algorithms, a

fundamental question to consider is the definition of “high” density. What should

be the cutoff threshold for a region to be considered as dense? In this section we

examine the answer of one clustering approach: bottom-up searching.

2.1.1 Bottom-up Searching Approach

In the bottom-up searching approach, the density threshold is supplied by

user through an input parameter. The first proposed algorithm of this type is

CLIQUE [5]. Initially each dimension is divided into units of the same width,

and the number of objects projected onto each unit is counted. A unit is defined

as dense if its object density exceeds the given threshold. Adjacent dense units

are grouped to form one-dimensional clusters. Clusters form in different one-

dimensional subspaces are not necessarily disjoint. A new iteration then starts

to search for two-dimensional dense regions, which are regions whose projections

on both constituting dimensions dense units. Adjacent two-dimensional dense

regions again form clusters. The searching repeats for higher dimensionality until

no more clusters can be formed.

The algorithm implicitly assumes that for a given cluster, the densities of

objects along all its relevant dimensions are comparable. Once the unit width is

fixed, dense units are unambiguously defined by the threshold parameter. The
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parameter is thus critical to the effectiveness of the algorithm.

Some variations of the algorithm have been proposed, including ENCLUS [17]

and MAFIA [54]. These algorithms consider issues such as correlation between

different dimensions, distribution of objects along each dimension, and variable

unit width. The core part of the algorithms, however, is still a bottom-up search-

ing according to a density threshold supplied by (or related to) a user parameter.

This approach is tightly related to fining frequent itemsets in association

rule mining. Each unit on a dimension resembles an item, the density of objects

corresponds to the support count, and a cluster is similar to a frequent itemset.

This is why some approaches propose the use of association rule hypergraphs [35]

to perform clustering. The tight relationship with frequent itemset mining un-

avoidably introduces a potential performance concern to the algorithms, namely

the exponential growth of the number of subclusters as cluster dimensionality

increases. By definition, the subspace clusters of CLIQUE obey the a priori

property: if a set of objects form a dense unit in a dI -dimensional space, they

also form a dense unit in the 2dI − 1 non-empty subspaces. This means the algo-

rithm has an exponential time complexity with respect to cluster dimensionality.

When working on transposed gene expression data where the dimensions corre-

spond to the genes, the dimensionality of a cluster can be so large that causes

the clustering algorithms to be very inefficient.

2.2 Projected Clustering

The definition of a projected cluster is very similar to that of a subspace

cluster. A projected cluster is a group of objects with high similarity in the

subspace formed by the relevant dimensions. In other words, when the objects are

projected onto the subspace, their similarity becomes apparent. When similarity

is measured by a distance function (which will be assumed in this section), a

projected cluster is essentially a subspace cluster with high object density at
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some regions in the subspace formed by the relevant dimensions.

Unlike subspace clustering in which all regions that satisfy the density re-

quirement are reported, projected clustering tries to find a number of disjoint

clusters that optimize a certain evaluation function from all possible partitioning

of objects and selections of relevant dimensions.

There are two major challenges in projected clustering that make it distinc-

tive from traditional clustering. The first challenge is the simultaneous deter-

mination of both cluster members and relevant dimensions. Cluster members

are determined by calculating object distances in the subspace formed by the

relevant dimensions, while the relevant dimensions are determined by measur-

ing the projected distances of the cluster members along different dimensions.

One common approach to tackling this chicken-and-egg problem is to form some

tentative clusters according to some heuristics, determine their relevant dimen-

sions, and then refine the cluster members based on the selected dimensions.

The heuristics being used are critical to the effectiveness of the algorithm. If

inappropriate heuristics are used, the tentative clusters formed will not help the

discovery of real clusters. We will discuss later how the performance of some

existing algorithms may be affected by employing some heuristics that could be

inappropriate in some situations.

The second challenge is the evaluation of cluster quality, which is in turn

related to the determination of the dimensionality of each cluster. Traditionally,

the quality of a cluster is measured by some objective functions. If a correct

clustering model is chosen, a better objective score implies a larger chance that

the clusters formed are correct. For example, as mentioned in the last chapter,

k-means assumes that each cluster consists of a set of objects distributed closely

around the centroid. The objective of the algorithm is thus to minimize the
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average within-cluster distance to centroid12:

W ({CI}) =
1
k

k∑
I=1

WI (2.1)

WI =

∑
x∈CI

∑
vj∈V (xj − xIj)2

NI

=
∑
vj∈V

σ2
Ij , (2.2)

where k is the number of clusters formed, xj is the projected value of object x on

dimension vj , and xIj and σ2
Ij are the average and variance of projected values of

the members of CI along vj . A straightforward generalization of W for projected

clustering is as follows:

W p({CI}) =
1
k

k∑
I=1

W p
I (VI) (2.3)

W p
I (VI) =

∑
x∈CI

1
dI

∑
vj∈VI

(xj − xIj)2

NI

=
1
dI

∑
vj∈VI

σ2
Ij . (2.4)

Similar objective functions are used in some previous studies [3, 4]. However,

the function has a strong predilection for a small number of selected dimensions.

Suppose the W p score for a set of projected clusters is w, it is always possible to

obtain an objective score not larger than w by deselecting some dimensions from

some clusters. In other words, the optimal objective score is monotonically non-

increasing as the clusters have fewer selected dimensions. To prove this property,

consider a cluster CI with dI selected dimensions v1, v2, ..., vdI
. Without loss of

1In this thesis, a capital letter, a small letter and a period in the subscript of a symbol
indicate that the symbol describes a set of objects or values, a specific object or value, and all
the objects or values in the dataset respectively. For example, xIj is the mean projected value
of all members in cluster CI along a specific dimension vj while x·j is the corresponding mean
of all objects in the dataset.

2Some implementations prefer the non-averaged version of the objective score (i.e., without
the normalization factors k in W ({CI}) and Ni in WI). The discussions in this section apply
to both definitions.
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generality, suppose σ2
I1 ≤ σ2

I2 ≤ ... ≤ σ2
IdI

. Now, by deselecting vdI
,

W p
I (VI − {vdI

}) =
1

dI − 1

∑
vj∈VI−{vdI

}

σ2
Ij

=
1
dI

(
1

dI − 1
+ 1)

∑
vj∈VI−{vdI

}

σ2
Ij

≤ 1
dI

(σ2
IdI

+
∑

vj∈VI−{vdI
}

σ2
Ij)

=
1
dI

∑
vj∈VI

σ2
Ij

= W p
I (VI). (2.5)

As a result, if a clustering algorithm tries to optimize W p, it would probably

produce clusters each with only a few selected dimensions. In a real dataset, it

is common to find a set of unrelated objects that have similar projected values

along a few dimensions due to random chance. If the objects are treated as

a cluster and the dimensions are selected as the only relevant dimensions, an

excellent evaluation score will be resulted, yet the cluster is incorrect. The same

argument holds for some other objective functions, such as the average between-

cluster distance or the average within-cluster to between-cluster distance ratio.

Algorithms that are based on the optimization of such functions would fail if

they place no additional constraints on cluster dimensionality.

One possible solution is to get the dimensionalities of the clusters by some

other means, and then optimize the objective function subject to the dimension-

ality requirements. The simplest way to obtain the cluster dimensionalities is to

set them as algorithm parameters and request users to supply the values. While

this solution has been adopted in some of the projected clustering algorithms, it

has a usability implication.

Another solution is to design a new objective function for projected cluster-

ing. Summarizing the proposals of some previous studies[3, 4, 59], a projected

cluster is likely to be correct if
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1. Its selected dimensions have high relevance values (i.e., the average dis-

tances between the projections of the cluster members are small).

2. It has a large number of selected dimensions.

3. It contains a large number of objects.

The reason for the first criterion is trivial, and the other two criteria ensure

that the high relevance values of the selected dimensions are not due to random

chance (a probability analysis considering the first two criteria can be found in

Appendix A). It is favorable for a cluster to have all three properties, but in

reality optimizing one property would usually sacrifice the other. Suppose a

dimension is selected for a cluster if the average distance between the projected

values is below a certain threshold, then when the threshold is fixed, adding more

objects to a cluster will probably decrease the number of relevant dimensions

qualified for selection. In the same manner, if the members of a cluster are fixed,

raising the threshold will probably reduce the number of dimensions qualified

for selection. Again, a simple way to deal with the problem is to combine the

criteria into a single score, and let users to decide the relative importance of each

criterion. This solution may also affect the usability of the algorithms.

In summary, tentative clusters formation, quality evaluation and the de-

termination of cluster dimensionalities are the major difficulties of projected

clustering. We now examine how these problems are tackled in some proposed

projected clustering approaches.

2.2.1 Hypercube Approach

In the hypercube approach DOC and its variant FastDOC [59], each cluster

is defined as a hypercube with width 2ω, where ω is a user supplied value. The

clusters are formed one after another. To find a cluster, a pivot point is randomly

chosen as the cluster center and a small set of objects is randomly sampled to form
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a tentative cluster around the pivot point. A dimension is selected if and only

if the distance between the projected values of each sample and the pivot point

on the dimension is no more than ω. The tentative cluster is thus bounded by a

hypercube with width 2ω. All objects in the dataset falling into the hypercube

are grouped to form a candidate cluster. More random samples and pivot points

are then tried to form more candidate clusters, and a specially designed function

is used to evaluate quality of them, which takes into account both the number

of selected dimensions and the size of a cluster:

µ(NI , dI) = NI(
1
β

)dI , (2.6)

where β is another user parameter that defines the relative importance of the size

and dimensionality of a cluster. The candidate cluster with the best evaluation

score is accepted, and the whole process repeats to find other clusters.

It is proved in [59] that if a sufficiently large number of pivot points and

random samples are tried, there is a high probability that a correct cluster will be

formed. However, the number of trials can become very large for some parameter

values. FastDOC sets an upper bound of the number of iterations to limit the

maximum execution time, but the clustering accuracy is no longer guaranteed.

In view of this, MineClus [72] makes use of efficient frequent-itemset discovery

techniques to improve the time performance of the approach. Yet the accuracy

of the algorithm still depends on the parameters ω and β in determining relevant

dimensions and evaluating cluster quality.

2.2.2 Partitional Approach

Another approach is based on the traditional partitional clustering algo-

rithms described in Chapter 1. PROCLUS [3] is one of the representative algo-

rithms, which is based on the k-medoids method. As usual, some objects are

initially chosen as the medoids, but before assigning every object in the dataset
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to the nearest medoid, each medoid is first temporarily assigned a set of “neigh-

boring objects” that are close to it in the input space to form a tentative cluster.

For each tentative cluster, the d input dimensions are sorted according to the

average distance between the projected values of the medoid and the neighboring

objects. On average l dimensions with the smallest average distances are selected

as the relevant dimensions for each cluster, where l is a parameter value supplied

by user. Normal object assignment then resumes, but the distance between an

object and a medoid is computed using only the selected dimensions. Medoids

with too few assigned objects are regarded as outliers, which are replaced by

some other objects to start a new iteration.

The objective function of PROCLUS is similar to the W p score described

before. As explained, the use of the objective function would cause PROCLUS to

select too few relevant dimensions for each cluster if there are no restrictions on

the number of selected dimensions. In order to tackle the problem, PROCLUS

limits the average cluster dimensionality by the user parameter l. This may

introduce a usability problem when working on high-dimensional datasets, where

the number of possible l values is large and thus the correct value to use is hard

to predict. Another potential problem arises when the real clusters have few

relevant dimensions, in which case the cluster members may not be close to each

other in the original input space. Since the tentative clusters are formed based

on distance calculations in the input space, when a member of a real cluster is

chosen as a medoid, the neighboring objects assigned to it may not come from

the same real cluster. Subsequently, the dimensions selected would not be the

real relevant dimensions and the resulting cluster would be a well mixture of

objects from different real clusters.

Another partitional algorithm ORCLUS [4] was proposed to improve PRO-

CLUS. Instead of drawing exactly k medoids at the beginning, more medoids are

chosen to form more tentative clusters, which are later merged to form the final

k clusters. In addition, ORCLUS selects the principal components (PCs) instead
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of input dimensions in order to detect arbitrarily oriented clusters. Principal

component analysis (PCA) is performed on each cluster, but unlike traditional

PCA where the goal is to identify PCs that capture a large proportion of total

variance, the objective of ORCLUS is to find out PCs that have low average

distances between projected values, which correspond to the PCs with small

eigenvalues. As in PROCLUS, the number of PCs to be selected is governed by

input parameters.

According to the experimental results reported in [4], ORCLUS is more accu-

rate and stable than PROCLUS. Nevertheless, it still relies on user-supplied val-

ues in deciding the number of PCs to select. In addition, ORCLUS assumes that

each cluster has the same number of relevant PCs, which seems to be quite unre-

alistic. Due to the heavy computation of PCA, the execution time of ORCLUS

can also become intolerably long when working on high-dimensional datasets.

2.3 Biclustering

The third computational problem regarding the identification of clusters in

subspaces is biclustering. Unlike the previous two problems, biclustering does not

have a concrete technical definition. Biclustering is simply to cluster both rows

and columns simultaneously, so that each resulting cluster consists of a subset of

rows and a subset of columns. According to [18], the biclustering concept can be

traced back to early 70’s [37]. This section introduces a few different biclustering

approaches, which all find applications in gene expression data analysis.

2.3.1 Minimum Mean Squared Residue Approach

The first approach assumes that each projected value in a cluster is the ad-

dition of three components: the background level, the row effect and the column

effect. Figure 2.1 shows one such cluster with background level 5, row effects
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Back.: 5 Column 0: 1 Column 1: 3 Column 2: 2

Row 0: 2 8 10 9

Row 1: 4 10 12 11

Row 2: 1 7 9 8

Figure 2.1. A bicluster based on the minimum mean squared residue approach.

< 2, 4, 1 > and column effects < 1, 3, 2 >. For example, the value at row 0 and

column 1 is calculated as 5 + 2 + 3 = 10.

The algorithms try to identify biclusters that have small deviations from

the above perfect cluster model. The deviation is measured by the mean squared

residue score. For a cluster CI with relevant dimensions VI , the score is defined

as follows:

HI =
P

xi∈CI,vj∈VI
(xij−xIj−xiJ+xIJ )2

NIdI
, (2.7)

where xIj , xiJ and xIJ are the column average, row average and block average

respectively:

xIj =
1

NI

∑
xi∈CI

xij (2.8)

xiJ =
1
dI

∑
vj∈VI

xij (2.9)

xIJ =
1

NIdI

∑
xi∈CI ,vj∈VI

xij (2.10)

For a perfect cluster that has zero deviation from the model, the H score

is zero. In terms of gene expression profiles, this occurs when all the genes of

a cluster have exactly the same rise and fall pattern of expression across the

relevant samples. In general, the smaller is the H score, the more similar are the

expression patterns.

To identify the clusters, Cheng and Church [18] proposed a number of greedy

algorithms to search for matrices with low H scores one after another. At the
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beginning a cluster is initialized to contain all objects in the dataset and with

all dimensions selected. An iterative process then repeatedly adds to or removes

from the cluster some rows and/or columns in order to decrease the H score of

it. A cluster is accepted if the score drops below a user-defined residue threshold

δ, or no more improvements can be made. In order to avoid the production

of non-interesting clusters (clusters with extremely small sizes or clusters with

constant projected values, which must receive good H scores), the algorithm

also tries to maximize the cluster sizes and requires the clusters to have large

row variances. After producing one cluster, the involved projected values are

replaced by random numbers such that they create no structural influence to

other clusters. It also prevents the same clusters from being reported multiple

times. The searching process then repeats to form more clusters until a target

number of clusters are formed.

In theory, the clusters produced by the Cheng and Church algorithms are

not necessarily disjoint, but in reality due to the introduction of random numbers

after discovering each cluster, it is difficult to identify clusters with substantial

overlapping. This issue is addressed by the FLOC algorithm [69], which tries to

locate all clusters at the same time and return them all together. The algorithm

also takes care of missing values. Like the Cheng and Church algorithms, it also

requires a residue threshold to define the stopping condition.

In [68], the pCluster model is defined to restrict the above model in a way

that no object is allowed to have a trend across two dimensions that is very

different from other objects. More specifically, for any two objects x and y in a

cluster and any two relevant dimensions v1 and v2, the value

|(x1 − x2)− (y1 − y2)|

should not exceed a user-defined threshold δ. It is proved that if a matrix has

this property, all its submatrixes also have this property.
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Global background: 10

+

Cluster 1

Back.: 5 Column 0: 1 Column 1: 2 Column 2: ir.

Row 0: 2 8 9 0

Row 1: 3 9 10 0

Row 2: ir. 0 0 0

+

Cluster 2

Back.: 2 Column 0: 4 Column 1: 2 Column 2: 1

Row 0: 3 9 7 6

Row 1: ir. 0 0 0

Row 2: ir. 0 0 0

↓
Resulting dataset

27 26 16

19 20 10

10 10 10

Figure 2.2. A bicluster based on the plaid model.

The Plaid model [48] goes one step further to model the whole dataset as a

superposition of clusters over the global background level. If a projected value

belongs to multiple clusters, it will equal to the summation of all their background

levels and the row and column effects. Figure 2.2 shows a dataset with two

clusters that follows the Plaid model (ir means a row/column is irrelevant to a

cluster).

As in the Cheng and Church algorithms, clusters are discovered one after

another by a greedy algorithm. When discovering each cluster, the effects of the

previously discovered clusters are first removed, then the model parameters for

the current cluster are estimated so that the deviation from a perfect cluster is

minimized. The algorithm stops when the size of a cluster is not larger than a

number of random clusters discovered from permuted data, or a target number
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of clusters has been formed.

The Plaid model is more suitable for identifying non-disjoint clusters, but the

greedy nature of the algorithm may still discourage the overlapping of clusters.

Suppose a projected value participates in multiple clusters. When identifying

the first cluster, the projected value is a mixture of the effects of all the clusters.

This means the value would appear to deviate greatly from the model of the

cluster, which prohibits the inclusion of it into the cluster. The same situation

happens for all remaining clusters, and the resulting clusters being discovered

may have little overlap.

2.3.2 Spectral Approach

The spectral approach [47] adopts a model similar to the ones in the previous

section in that each cluster is affected by a background level, row effects and

column effects. But unlike the previous models, the spectral approach assumes

that after normalization and reordering the rows and columns, a dataset becomes

a checkerboard structure composed of aligned clusters. Figure 2.3 (from [47])

shows a data matrix A consisting of six perfect clusters where there is no row

or column effects. The approach assumes that the row and column effects in

real datasets can be eliminated by some normalization techniques, so that after

reordering of the rows and columns the resulting dataset would consist of perfect

clusters in the checkerboard format.

Suppose the conditions are classified according to the vector x and the genes

are classified according to the vector y, then Ax = y. Similarly, by taking the

transpose of A, ATy = x′, where x′ = λ2x is a scalar multiple of x. This

results in an eigen problem ATAx = λ2x. The solutions to the problem are the

eigenvectors x. If the scalar constants in x (i.e., a, b and c in Figure 2.3) form

several clusters, the columns of A can be reordered accordingly. The row order

can then be identified in a similar fashion.
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(a) A normalized, row and column reordered gene
expression matrix.

(b) The transpose of the ma-
trix.

Figure 2.3. The spectral approach.

The approach guarantees the detection of clusters if the data matrix after

normalization can be reordered to exhibit a checkerboard structure. Yet it is

not sure whether the structure does exist in real datasets. It seems too rigid to

require all clusters to align in grids. The model also takes no account of outliers

and irrelevant dimensions.

2.3.3 Order Preserving Submatrixes Approach

The above two biclustering approaches assume that all genes in a cluster have

the same amount of response towards a certain condition. The order preserving

submatrixes approach [12] employs a less stringent model. In this model, the

absolute magnitude of response is unimportant. A submatrix is regarded as

a cluster if the projected values in each row can be sorted in strictly increasing

order by the same permutation of columns. A valid cluster is shown in Figure 2.4.

Each cluster is learnt from some (a, b) partial models, which specify only

the first a and last b columns in the permutation. In Figure 2.4, the (1, 2)

partial model specifies the permutation of the columns to be < 3, ?, 1, 2 >, where

the symbol ? means the column has not been specified. Partial models with

the same a and b values are compared according to their statistical significance.
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column 0 column 1 column 2 column 3

row 0 10 11 12 9

row 1 7 12 20 3

row 2 13 17 19 8

Permutation 2 3 4 1

Figure 2.4. An order preserving matrix.

Basically, a cluster is more favorable if there are more rows that support it, and

a partial model is more likely to grow to a cluster with many supporting rows

if the specified columns leave a big gap for unspecified columns. The OPSM

algorithm proposed in [12] constructs (1, 1) partial models, keep the best l of

them according to their significance (where l is a user parameter value), grows

them to (2, 1) partial models, keep the best l of them, grows them to (2, 2) model,

and so on, until l (d s
2e, b

s
2c) models are obtained, where s is also a parameter

value.

The model adopted by the approach is more flexible than the previous two

models, which is desirable since it is unlikely that a group of related genes will

have exactly the same amount of response towards certain condition change. The

model might, on the other hand, be too flexible in that it completely ignores the

response magnitude. For instance, in Figure 2.4, row 0 is rather inactive while

row 1 has significantly different projected values in different columns. It is not

very intuitive to regard the two rows as of the same type. The model is also

sensitive to noise, which can easily swap the sorting order of some projected

values.

2.3.4 Maximum Weighted Subgraph Approach

All the above biclustering approaches define a cluster as a submatrix where

the projected values of each row exhibits the same rise and fall pattern across

the columns. The maximum weighted subgraph approach [65] has a different
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view of cluster. A dataset is viewed as a bipartite graph with the genes as one

set of nodes and the samples as the other. A gene node and a sample node are

connected if the expression level of the gene changes significantly in the sample

(e.g. the absolute standard score of the projected value is larger than one), and

the edge between the nodes is assigned a weight related to the significance of the

value. A cluster is defined as a heavy biclique, where the weight of a subgraph

is the total weight of the edges between every node pairs from different node

sets. The weight of an edge is in turn related to the statistical significance of the

projected value.

The algorithm, called SAMBA, guarantees to find k clusters with heaviest

weights, where k is the target number of clusters. One constraint is that for each

row node, there should be no more than a constant number of edges incident on

it. Otherwise, the algorithm would have an exponential time complexity.

The approach suggests a new definition of cluster and brings new insights to

future research directions. A potential limitation of the approach is the constraint

on the number of incident edges of each node, which hinders the production of

clusters that have large sizes or high dimensionalities.

2.3.5 Coupled Two-Way Clustering Approach

The last biclustering approach to be discussed is coupled two-way cluster-

ing [31], which is again very different from the previous approaches. This ap-

proach does not assume any fixed cluster model, but instead depends on the

“plug-in” non-projected clustering algorithm to decide the type of clusters to

form. The basic idea is to perform a series of non-projected clustering on a sub-

set of genes and samples. The resulting clusters suggest new subsets of genes

and samples to be attempted in later rounds of clustering.

More precisely, the algorithm keeps a pool G of gene sets and a pool S of

sample sets. The initial pools contain the whole sets D (all genes) and V (all sam-
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ples) respectively, and any other subsets of genes and samples that are believed

to be meaningful according to some domain knowledge. The algorithm starts by

taking an element from G and an element from S to form a data submatrix, and

performs non-projected clustering on the submatrix and its transpose. The re-

sulting gene and sample clusters are then put back to the two pools respectively.

The clustering process repeats for all pairs of gene and sample sets each taking

from the corresponding pool until no new clusters are produced.

The approach illustrates one possible way to produce projected clusters

by non-projected clustering algorithms. However, only a specific kind of non-

projected clustering algorithms can be used as the plugin. They should be able

to automatically determine the number of clusters, and the number of distinct

clusters produced should not grow uncontrollably. Otherwise, the algorithm will

run for a very long time and produce an unmanageable amount of clusters.

2.4 Summary and Discussions

Table 2.1 summarizes some key properties of the approaches described in

this chapter. Our clustering problem (Chapter 1) is most similar to the one of

the partitional approaches. It is also a generalized version of hypercubes, since

our definition does not require a cluster to have equal width along each relevant

dimension. We will therefore focus on the algorithms from these groups.

We observe that most algorithms from these groups rely on some critical pa-

rameters to guide the clustering process, like the parameter l related to cluster di-

mensionality in PROCLUS and ORCLUS, the width parameter ω of hypercubes

and the parameter β in the cluster evaluation function used by DOC, FastDOC

and MineClus. It is not always possible for users to determine the best parame-

ter values to use, especially when working on complex and high-dimensional gene

expression profiles from which little domain knowledge is accessible. It would be

more appropriate to have an algorithm that can intelligently determine the pa-
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Approach Algorithms Cluster definition Disjoint Clusters

clusters returned

• Bottom-up CLIQUE, ENCLUS, High density region No All

searching MIFIA

• Hypercube DOC, FastDOC, High density hypercube No Best

MineClus

• Partitional PROCLUS, ORCLUS Similar objects in the Yes Best

projected subspace

• Minimum mean Cheng and Church, Objects with similar No Best

squared residue FLOC, pCluster patterns

Lazzeroni and Owen

• Spectral Spectral Constant value region Yes Best

• Order preserving OPSM Order-preserving No Best

Submatrixes submatrix

• Maximum SAMBA Region with No Best

weighted subgraph significant expressions

• Coupled two-way CTWC Depending on plugin No All

clustering algorithm

Table 2.1. Summary of the reviewed clustering approaches.

rameter values to use on the fly according to the specific data characteristics of

the dataset being clustered.

This motivates us to develop a new algorithm that learns the parameter

values from data, which can be used to automatically analyze a lot of datasets

without human intervention. In addition, we require the algorithm to be able

to correctly identify clusters of extreme sizes and dimensionalities. It should not

form incorrect tentative clusters, and should be scalable and insensitive to noise.

The algorithm will be described in the next chapter.



Chapter 3

The HARP Algorithm

In this chapter we describe our new projected clustering algorithm HARP

(a Hierarchical approach with Automatic Relevant dimension selection for Pro-

jected clustering) that satisfies the requirements stated in the last chapter. It is

an agglomerative hierarchical clustering algorithm based on greedy merging of

the most similar clusters. Three building components of the algorithm will be

introduced first, followed by the complete algorithm and a complexity analysis

of it. The last section of the chapter will be devoted to a discussion on some ex-

tensions of HARP, which facilitate pattern-based clustering and the production

of non-disjoint clusters.

3.1 Relevance Index, Cluster Quality and Merge Score

HARP is classified as a projected clustering algorithm according to the clas-

sification in Chapter 2, which means it determines object similarity based on their

distance in the projected subspace. In other words, given a cluster of objects, the

relevance of a dimension in the cluster is related to the average distance between

the projected values of the member objects on the dimension. In many previous

studies [3, 4, 59], relevance is directly measured by this average distance. This

38
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Dimension A Dimension B Dimension C Dimension D

Object 1 1 0.2 10 0.72

Object 2 2 0.3 30 0.70

Object 3 8 1.0 20 0.73

Object 4 9 0.9 40 0.71

Figure 3.1. An example illustrating the idea of relevance.

may not be appropriate if the input dimensions have different ranges of values.

Consider an example relation shown in Figure 3.1, where objects 1 and 2 form

a cluster. If relevance is measured by the average within-cluster distance, di-

mension D is most relevant to the cluster as the within-cluster distance between

projected values is smallest along the dimension. Similarly, if the measurement

is based on average between-cluster distance, dimension C is most relevant to

the cluster. Obviously, both proposals are problematic as they do not satisfy

the fundamental property of relevant dimensions: helping distinguish the cluster

members from other objects. The projected values of objects 1 and 2 along the

two dimensions do not form continuous intervals containing no other projected

values. They cannot derive signatures of the cluster from the two dimensions. In

comparison, dimensions A and B are actually more relevant to the cluster, even

their absolute average within-cluster or between-cluster distances are worse.

From the example, it can be observed that if a dimension is relevant to a

cluster, not only should the projected values of the cluster members be close to

each other, they should also be well-separated from the projected values of other

objects. This can be captured by a comparison of variance within the cluster and

in the whole dataset. Recall that σ2
Ij denotes the variance of projected values of

all objects in CI along vj (the local variance) and denote σ2
·j as the variance of

projected values along vj in the whole dataset (the global variance), the relevance

index of vj in cluster CI is defined as follows:

RIj = 1−
σ2

Ij

σ2
·j

. (3.1)
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The index gives a high value when the local variance is small compared to

the global variance. This refers to the situation where the projections of the

cluster members on the dimension are close, and the closeness is not due to a

small average distance between the projected values in the whole dataset. A

dimension receives an index value close to one if the local variance is extremely

small, which means the projections form an excellent signature for identifying

the cluster members. Alternatively, if the local variance is only as large as the

global variance, the dimension will receive an index value of zero. This suggests a

baseline for dimension selection: a negative R value indicates a dimension is not

more relevant to a cluster than to a random sample of objects. The dimension

should therefore not be selected. We will discuss later how this baseline is used

to define the stopping criteria of HARP.

To prevent the index from being undefined in some degenerating situations,

we assume there does not exist any dimensions with zero global variances (on

which all objects have the same projected values). If such a dimension does

exist, it would not be useful at all and could be safely removed before the clus-

tering process. Also, if a cluster contains only one object, the index values of all

dimensions are set to one.

Each of the local and global variances can be computed from a cluster feature

(CF) [73], which consists of three additive components: the number of projected

values, the sum of the values, and the sum of squares of the values:

σ2
Ij =

∑
xi∈CI

x2
ij

NI
− (

∑
xi∈CI

xij

NI
)2. (3.2)

Whenever two clusters merge to form a new cluster, each CF of the new cluster

can be readily computed by adding the three components of the corresponding

CFs of the two original clusters separately. This makes the calculation of R very

efficient.

In Figure 3.1, the R values of the four dimensions in the cluster that contains
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objects 1 and 2 are 0.97, 0.97, -0.2 and -0.2 respectively, which match the intuitive

relevance of the dimensions.

Conceptually, incorporating the global variance in the relevance index is

similar to performing standardization to the dataset. The use of the index thus

implicitly performs standardization without the need of an explicit preprocessing

step. An advantage of the index is the strong intuitive meaning of the sign of

its values, which helps interpret the clustering results. The index also allows

adaptive re-standardization of data after outlier removal. This is done by recal-

culating the global variances by subtracting the values of the outliers from the

global CFs.

Based on the relevance index, the quality of a cluster CI can be measured

as the sum of the index values of all the selected dimensions:

QI =
∑

vj∈VI

RIj . (3.3)

In general, the more selected dimensions a cluster has, and the larger are their

respective R values, the larger will be the value of Q (recall the three significance

criteria of projected clusters discussed in Section 2.2. See also the analysis in

Appendix A). We will discuss how HARP determines the relevant dimensions

of each cluster later. At this point it can be assumed that each cluster has a

reasonable set of selected dimensions.

Similarly, a score can be defined to evaluate the merge between two clusters.

Basically, if two clusters can merge to form a cluster with high quality, the merge

is a potentially good one, i.e., the two clusters probably contain objects from

the same real cluster. However, in case the two merging clusters have a large

size difference, an unfavorable situation called mutual disagreement can occur.

Consider a large cluster with a thousand objects and a small one with only five

objects. If they merge to form a new cluster, the mean and variance of projected

values will highly resemble the original values of the large cluster, and it will
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dominate the choice of the dimensions to be selected. If a dimension is originally

selected by the large cluster, it will probably be selected by the new cluster also

no matter the projected values of the small cluster are close to those of the large

cluster or not. The resulting cluster can have a high Q score even the two clusters

have a strong mutual disagreement on the signatures of the resulting cluster.

To cope with this problem, we modify the relevance index to take into ac-

count the mutual disagreement effect. Suppose CI3 is the resulting cluster formed

by merging CI1 and CI2 , the mutual-disagreement-sensitive relevance index of di-

mension vj in CI3 is defined as follows:

R∗
I3j =

RI1j|I2 + RI2j|I1
2

, (3.4)

RI1j|I2 = 1−
σ2

I1j + (xI1j − xI2j)2

σ2
·j

= 1−

∑
xi∈CI1

(xij − xI2j)2/Ni

σ2
·j

. (3.5)

RI1j|I2 is the adjusted relevance index of vj in CI1 given that CI1 is merging

with CI2 . The numerator of its second term is the average squared distance

between the projected values of CI1 on vj from the mean projected value of CI2 .

RI2j|I1 is defined similarly. If the two clusters do not agree on the values along

vj , (xI1j − xI2j)2 will effectively diminish the R∗ score of the dimension. With

R∗
I3j defined, the merge score between clusters CI1 and CI2 can now be defined

as follows:

MS(CI1 , CI2) =
∑

vj∈VI3

R∗
I3j

=
∑

vj∈VI3

RI1j|I2 + RI2j|I1
2

=
∑

vj∈VI3

[1−
σ2

I1j + σ2
I2j + 2(xI1j − xI2j)2

σ2
·j

]. (3.6)
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The MS score will be used to determine the merge order: merges with higher

MS scores will be allowed to perform earlier.

3.2 Validation of Similarity Scores

The MS function concerns both the quality and number of selected dimen-

sions. A third criterion for evaluating cluster quality is the cluster size. Suppose

there is a set C of objects all belonging to real clusters to which dimension vj is

irrelevant. If the size of C is small, it is not uncommon to find the projections

of the objects in C on vj being close to each other due to random chance. If C

is large, the probability for the same phenomenon to occur is relatively smaller.

Looking in another way, if a dimension has a high relevance index value in a

cluster, the more objects the cluster contains, the less likely the high index value

is merely by chance.

Since HARP is a hierarchical algorithm with each initial cluster containing

a single object, it is not meaningful to incorporate cluster size directly in the

calculation of merge scores. However, it is possible to utilize the potential cluster

size in estimating the significance of a cluster, which can be obtained from the

frequency distribution of projected values. Figure 3.2a shows the distribution of

the projected values of all data objects on a typical dimension that is relevant

to some real clusters. The distribution contains a number of peaks, each corre-

sponding to the signature of a real cluster. The base level at the troughs is likely

due to random values. Suppose a cluster contains members with projected val-

ues within the interval [a, b], it has a high potential to merge with other clusters

to form a cluster with a significant size and a high concentration of projected

values around the [a, b] region. On the other hand, if a cluster contains members

with projected values within the interval [c, d], although the cluster may receive

a high R score at the dimension, the cluster is unable to keep the high R value

if it is to grow to a significant size. In other words, the high concentration of
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(b) A histogram built from the distribution.

Figure 3.2. The frequency distribution of a typical dimension.

projected values is probably due to random chance. The R value of the cluster

should therefore be invalidated in order to prevent more objects to merge into

the cluster due to the fake signature.

The distribution inspires us to develop a histogram-based validation mecha-

nism for preventing the formation of incorrect clusters due to the above problem.

The idea is that if a dimension is relevant to a cluster, the corresponding his-

togram should contain a peak around the signature values (see regions A and

B in Figure 3.2b). The width and height of the peak depend on the properties

of the cluster, but provided the cluster has a significant size, the peak should

exceed the random noise level, which corresponds to the mean frequency in case

of a uniform distribution (shown by the dotted line). Clusters covered by bins

that stay below the noise level are statistically insignificant (region C), and the

relevance index value of the dimension in the cluster will be rejected.

The validation mechanism contains two steps. First, the Kolmogorov-Smirnov

goodness of fit test [16] is used to check if a dimension is irrelevant to all clus-

ters, i.e., the distribution is essentially uniform. If the probability is high, the

dimension will be removed from the dataset. The purpose of this step is to

filter out dimensions where the peaks are caused by random fluctuations only.

After filtering, each remaining dimension is expected to be relevant to at least

one cluster. If a cluster CI has mean xIj and variance σ2
Ij of projected values

along dimension vj , we check the mean frequency of the bins covering the range

[max(xIj − 2σIj ,minIj),min(xIj + 2σIj ,maxIj)], where minIj and maxIj are
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the minimum and maximum projected values of the members of CI on vj . The

use of a 4-standard deviation range covers 95% of the projected values if they

follow a Gaussian distribution while some abnormalities are ignored. To han-

dle non-Gaussian cases, the minimum and maximum projected values are used

to refine the boundaries of the range. When selecting the relevant dimensions

of a cluster, if the mean frequency of the bins is below the mean of the whole

frequency distribution, RIj will be set to zero. When calculating MS between

two clusters CI1 and CI2 , if either RI1j or RI2j is rejected by the validation

mechanism, vj will make a zero contribution to the MS score.

We intentionally keep the validation mechanism simple in order to avoid

introducing user parameters or computational overheads. It is the simplicity of

the mechanism that makes it insensitive to the number of bins in the histogram.

Any reasonable number can serve the purpose well, and we set it to
√

N in all

our experiments. We leave the more advanced uses of histograms in projected

clustering to future research studies.

When working on gene expression datasets, the histogram-based validation

is usually applied on gene clustering only, but not on sample clustering. This is

because in the latter case the number of objects (samples) is usually too small to

build a histogram that could simulate the real distribution of expression values.

3.3 Dynamic Threshold Loosening

When we introduced the MS function in Section 3.1 we assumed that there

is a way to determine the relevant dimensions of each cluster. In this section we

discuss how it is made possible by the dynamic threshold loosening mechanism.

As discussed before, a cluster is likely to be correct if it contains a large

number of selected dimensions, and the selected dimensions have high relevance

index values. This means merges that form resulting clusters with both properties
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should be allowed to perform earlier. Practically, this is achieved by two internal

thresholds Rmin and dmin. Two clusters are allowed to merge if and only if the

resulting cluster has dmin or more selected dimensions, and a dimension vj is

selected if and only if R∗
Ij ≥ Rmin. At any time, the two thresholds define a set

of allowed merges where the actual merging order within the set is determined

by the MS scores.

At the beginning, Rmin and dmin are initialized to their tightest (most re-

strictive, i.e., highest) values 1 and d respectively. All allowed merges produce

clusters that contain identical objects, so the clusters must be correct. At some

point, there will be no more qualified merges. The thresholds will be slightly

loosened to qualify some new merges. Provided the loosening is mild, there is a

high probability that the merges will produce correct clusters as the clusters are

required to have a large number of selected dimensions with high R values (Ap-

pendix A). Whenever all qualified merges have been performed, the thresholds

will be further loosened. As clustering proceeds, the clusters grow bigger in size.

The projections of the cluster members on the real relevant dimensions remain

close to each other, but the chance of having similar closeness of projections on

other dimensions drops, so as their relevance index values. This allows the real

relevant dimensions to be clearly differentiated from the irrelevant dimensions,

which in turn ensures the formation of correct clusters.

In order to guarantee the minimum quality of the final clusters, the two

thresholds are associated with baseline values such that when the baselines are

reached, no further loosening is allowed. As mentioned in Section 3.1, a negative

R value means that a dimension is very unlikely to be relevant to a cluster. The

baseline of Rmin is thus set to zero. For dmin, the baseline is set to one, which

is the minimum value for a cluster to be defined as a projected cluster. We will

see later that the HARP algorithm allows users to specify an optional target

number of clusters. According to our experience, if such a value is specified, the

algorithm usually finishes the clustering process well before the thresholds reach
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their baselines. The clusters produced thus contain selected dimensions with R

scores much better than that of a random set of projected values.

There are many possible ways to loosen the threshold values. For example,

from the last set of allowed merges, the average number of selected dimensions

and their relevance index values can be computed to suggest which threshold

has a greater loosening need. However, from our empirical study, a simple lin-

ear loosening scheme is found to be very adaptive and performed well. In this

scheme, there is a fixed number of threshold levels such that whenever no more

qualified merges remain, the values of the two thresholds are updated using a

linear interpolation towards the baseline values (see Section 3.4 for the details).

The clustering accuracy of HARP is insensitive to the number of threshold levels,

as we will show in Chapter 4. By default, we set it to the dataset dimensionality

d such that after each threshold loosening, dmin is reduced by 1.

Note that by using the dynamic threshold loosening scheme, we do not

require users to supply any parameter values for determining the relevant di-

mensions of the clusters.

3.4 The Complete Algorithm

With the core building blocks described in the previous sections, we now

present the whole HARP algorithm. The skeleton of the whole algorithm is

shown in Algorithm 3.1, and Procedures 3.2 to 3.6 list the pseudo codes of its

main procedures.

At the beginning of the clustering process, each object forms a singleton

cluster. The dimensionality and relevance thresholds dmin and Rmin are initial-

ized to their tightest values. For each cluster, the dimensions that satisfy the

threshold requirements are selected. The merge score between each pair of clus-

ters is then calculated. Only the merges that form a resulting cluster with dmin
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or more selected dimensions are qualified. The other merges are being ignored.

Algorithm HARP (k: target no. of clusters (default: 1))
1 For step := 0 to d− 1 do {
2 dmin := d− step
3 Rmin := 1− step/(d− 1)
4 Foreach cluster CI

5 SelectDim(CI , Rmin)
6 BuildScoreCache(dmin, Rmin)
7 While cache is not empty {
8 // CI1 and CI2 are the clusters involved in the
9 // best merge, which forms the new cluster CI3

10 CI3 := CI1 ∪ CI2

11 SelectDimNew(CI3 , Rmin)
12 UpdateScoreCache(CI3 , dmin, Rmin)
13 If clusters remained = k
14 Goto 17
15 }
16 }
17 ReassignObjects()
End

Algorithm 3.1: The HARP algorithm.

Procedure BuildScoreCache(dmin: dim. threshold,
Rmin: rel. threshold)
1 Foreach cluster pair CI1 , CI2 do {
2 CI3 := CI1 ∪ CI2

3 SelectDimNew(CI3 , Rmin)
4 If dI3 ≥ dmin

5 Insert MS(CI1 , CI2) into score cache
6 }
End

procedure 3.2: The score cache building procedure.

The algorithm repeatedly performs the best merge according to the MS

scores of the qualified merges. In order to efficiently determine the next best

merge, merge scores are stored in a cache. After each merge, the scores related

to the merged clusters are removed from the cache, and the best scores of the

qualified merges that involve the new cluster are inserted back. The selected
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Procedure SelectDim(CI : target cluster, Rmin: rel. threshold)
1 Foreach dimension vj

2 If RIj ≥ Rmin and ValidRel(CI , vj)
3 Select vj for CI

End

procedure 3.3: The dimension selection procedure for an existing cluster.

Procedure SelectDimNew(CI3 : target cluster, Rmin: rel. threshold)
1 Foreach dimension vj {
2 // CI3 is a potential cluster formed by merging CI1 and CI2

3 If R∗
Ij ≥ Rmin and ValidRel(CI1 , vj) and ValidRel(CI2 , vj)

4 Select vj for CI3

5 }
End

procedure 3.4: The dimension selection procedure for a new cluster.

Procedure ValidRel(CI : target cluster, vj : target dimension)
1 lowv := max(xIj − 2σIj , minIj)
2 highv := min(xIj + 2σIj , maxIj)
3 If mean frequency of the bins covering [lowv, highv] <

mean frequency of all bins
4 return false
5 Else
6 return true
End

procedure 3.5: The relevance index validation procedure.

Procedure UpdateScoreCache(CI3 : new cluster,
dmin: dim. threshold, Rmin: rel. threshold)
1 // CI3 is formed by merging CI1 and CI2

2 Delete all entries involving CI1 and CI2 from cache
3 Foreach cluster CI4 6= CI3 do {
4 CI5 := CI3 ∪ CI4

5 SelectDimNew(CI5 , Rmin)
6 If dI5 ≥ dmin

7 Insert MS(CI3 , CI4) into score cache
8 }
End

procedure 3.6: The score cache updating procedure.
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dimensions of the new cluster are determined by its members according to Rmin.

According to the definition of R, if a dimension is originally not selected by

both merging clusters, it must not be selected by the new cluster. However, if a

dimension is originally selected by one or both of the merging clusters, it may or

may not be selected by the new cluster.

We implemented three kinds of cache structures: priority queue (similar

to the one used in [34]), quad tree, and Conga line [27]. Quad tree is optimal

in access time, which takes O(N) time per update1, but it needs O(N2) space.

Conga line is best for very large datasets as it takes only O(N) space, but it needs

O(N log N) time per insertion and O(N log2 N) time per deletion. Priority queue

takes worst case O(N2) space, but due to the two thresholds of HARP, usually

only a small fraction of the O(N2) cluster pairs are allowed to merge, so the

actual space being used is much lower. The time for each update is O(N log N).

Depending on the memory available, HARP chooses the best cache structure to

use and all structures give identical clustering results.

Whenever the cache becomes empty, there are no more qualified merges at

the current threshold level. The thresholds will be loosened linearly according to

the formulas in lines 2 and 3 of Algorithm 3.1. Further rounds of merging and

threshold loosening will be carried out until a target number of clusters remains,

or the thresholds reach their baseline values and no more qualified merges exist.

To further improve clustering accuracy, an optional object reassignment step

can be performed after the completion of the hierarchical part. The MS score

between each clustered object and each cluster is computed based on the final

threshold values when the hierarchical part ends. After computing all the scores,

each of the objects is assigned to the cluster with the highest MS score. The

process repeats until convergence or a maximum number of iterations is reached.
1Here an update means an insertion or deletion of a cluster (instead of a merge score).

When two clusters merge to form a new cluster, two deletions (of the original clusters) and one
insertion (of the new cluster) are required.



CHAPTER 3. THE HARP ALGORITHM 51

The whole algorithm requires no user parameters in guiding dimension selec-

tion or merge score calculation, so it can easily be used in real applications. The

high usability is attributed to the dynamic threshold loosening mechanism, which

relies on the hierarchical nature of HARP. The parameter k that specifies the

target number of clusters is optional. Like other hierarchical clustering methods,

k can be set to 1 and the whole clustering process can be logged as a dendro-

gram2, which allows users to determine the cluster boundaries from a graphical

representation (e.g. [26]). These advantages justify the use of the hierarchical

approach in spite of its intrinsic high time complexity. HARP is especially suit-

able for applications where accuracy is the first priority and the datasets are of

moderate sizes, such as gene expression profiles. In order to deal with very large

datasets, we will discuss some speedup methods in the next section.

Finally, we describe the outlier handling mechanism of HARP. It is similar

to the one used by CURE [33] with two phases of outlier removal. Phase one is

performed when the number of clusters remained reaches a fraction of the dataset

size. Clusters with very few objects are removed. Phase two is performed near

the end of clustering to prevent the merging of different real clusters due to the

existence of noise clusters. As pointed out in [33], the time to perform phase one

outlier removal is critical. Performing too early may remove many non-outlier

objects, while performing too late may have some outliers already merged into

clusters. HARP performs phase one relatively earlier so that most outliers are

removed, possibly together with some non-outlier objects. Before phase two

starts, each removed object is filled back to the most similar cluster subject

to the current threshold requirements. Due to the thresholds, real outliers are

unlikely to be filled back. From experimental results, this fill back process usually

improves the accuracy.
2Due to the threshold requirements, it is not always possible to merge the objects into a

single cluster at the end of clustering. In general, the dendrograms of HARP are forests of trees.
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3.5 Complexity analysis

The time and space complexity of HARP depends on the cache structure

used to store merge scores. At the beginning of each threshold level, building the

cache requires O(N2) merge score calculations, each taking O(d) time. In the

worst case, no merges are qualified and the same order of building time is required

for all O(d) threshold levels, leading to O(N2d2) cache building time. Whenever

two clusters merge, all cached entries involving the clusters have to be deleted,

the merge score between the new cluster and all other clusters calculated, and the

new entries added to the cache. Suppose each cache access (insertion or deletion

of a cluster) takes O(f(N)) time, then each merge requires O(f(N) + Nd) time

since O(N) merge score calculations are required. Suppose k � N , then the

total merging time involves O(N) merges, which take O(Nf(N) + N2d) time.

In total, the whole algorithm takes O(N2d2 + Nf(N)) time in the worst case,

where f(N) ranges from N (quad tree) to N log2 N (Conga line).

While this theoretic worst case time complexity is quite daunting, the real

execution time is much more encouraging as it is possible to optimize the per-

formance of HARP in many ways. For example, for two clusters to be qualified

for merging, the number of common dimensions that pass the histogram-based

validation must exceed the dmin threshold. By checking the maximum number

of such common dimensions of all cluster pairs, many threshold levels could be

skipped if they contain no qualified merges. This optimization is most useful

when the dimensionalities of the clusters are low relative to the dataset dimen-

sionality. Similarly, when determining the merge score between two clusters, the

R∗ value of each dimension of the resulting cluster is computed in turn. Once

the number of selected dimensions is confirmed to be lower than dmin, the R∗

values of the remaining dimensions do not need to be computed as the merges

must not be qualified.

In practice, the execution time of HARP is reasonable with medium-sized
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datasets, but it can become unacceptable when the dataset size or dimensionality

is very large. We propose two ways to speedup the clustering process. When the

dataset size is large, clustering can be performed on a random sample of objects.

Upon completion of the clustering process, each unsampled object is filled back

to the most similar cluster subject to the restriction of the final threshold values.

When the dataset dimensionality is high, a constant number of threshold levels

can be used (line 2 of Algorithm 3.1), so that the quadratic term with respect to

d in the total time complexity becomes linear. We will show in the next chapter

that these speedup methods reduce the clustering time dramatically with only

minor impact to the clustering accuracy of HARP in our experiments.

The space requirement of HARP is dominated by the cache structure and

the size of the dataset. The worst-case complexity is O(Nd) when Conga line is

used, and O(N2 + Nd) when quad tree or priority queue is used.

3.6 Extensions

Originated from traditional hierarchical clustering algorithms, HARP pro-

duces disjoint clusters and calculates object similarity (and relevance index val-

ues) based on the distance between projected values. When clustering gene

expression profiles, it is sometimes more preferable to measure object similarity

by the likeness of their rise and fall patterns of expression values. Two genes are

regarded as similar if they have similar expression patterns, even there is a large

absolute difference between their expression values. It is also desirable to allow

clusters to be non-disjoint when producing gene clusters since a single gene may

be involved in multiple functions.

HARP can be extended to provide the functionality. To perform pattern-

based clustering, the row effects (Section 2.3.1) of the clusters have to be removed.

Consider the perfect bicluster shown in Figure 2.1. If the row effects are removed,

the cluster will become the one shown in Figure 3.3. At each relevant dimension,
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Back.: 5 Column 0: 1 Column 1: 3 Column 2: 2

Row 0: 0 6 8 7

Row 1: 0 6 8 7

Row 2: 0 6 8 7

Figure 3.3. The bicluster shown in Figure 2.1 with the row effects removed.

all members have exactly the same projected value. In reality, when clusters are

imperfect, the projected values on each relevant dimension will concentrate on an

exceptionally small range. This means the dimensions will receive high relevance

index values in the cluster, and HARP will be able to identify the high quality

of the cluster by the Q and MS functions even the original projected values of

the objects are quite different.

If the real relevant dimensions are known, the row effects can be removed by

deducting each projected value by the mean of its row over the relevant dimen-

sions (mean centering). Each projected value xij in cluster CI is transformed as

follows:

x
′
ij = xij − xiJ (3.7)

It can be easily verified that mean centering can effectively remove the row

effects of the dataset in Figure 2.1. Although the resulting data values are

different from the ones shown in Figure 3.3, the rise and fall patterns in the

original cluster can be captured by the distance between objects in both cases.

In terms of gene expression, the transformed value represents the expression level

of gene i in sample j relative to its average expression in the relevant samples.

Suppose a cluster contains objects all from the same real cluster, it would

be ideal to perform mean centering according to the real relevant dimensions

of the real cluster. Unfortunately, the real relevant dimensions are unknown

during the clustering process until most members of the real cluster have been

identified. To tackle the problem, the selected dimensions of each cluster are
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used to approximate the real relevant dimensions, and a new mean centering is

performed on the members of a cluster every time the selected dimensions of it

are updated after it merges with another cluster.

A problem arises when we want to calculate the merge score between two

clusters. The merge score of HARP (MS) is a summation of relevance index

values of the selected dimensions of the resulting cluster plus a penalty term. In

order to determine the selected dimensions of the resulting cluster, we need to

compare the relevance index value of each dimension with the Rmin threshold.

The relevance index values can be computed accurately only when the mean

centering has been performed. However, the mean centering can be performed

only when the set of selected dimensions is defined.

We use a simple heuristic to break this infinite looping. The selected di-

mensions of the new cluster are estimated by the intersection of the two sets of

selected dimensions of the merging clusters, since the chance for a dimension to

be selected for the new cluster is much higher if it is originally selected by both

merging clusters. This set of temporarily selected dimensions is used to perform

mean centering on the members of the two clusters. The relevance index val-

ues of each dimension of the new cluster can then be computed, and a refined

set of selected dimensions can be obtained by selecting all dimensions with R∗

exceeding Rmin. This refined set can again be used to perform another round

of mean centering and dimension selection. The elements in the set of selected

dimensions usually become stable after a few rounds of refinement, at which the

merge score between the clusters will be determined.

To produce non-disjoint clusters, each object is allowed to join multiple

mature clusters after their structures have been identified during the normal

clustering process. More specifically, when normal clustering completes, for each

produced cluster CI , all the objects in the dataset will be examined to see if they

can be merged into CI without lowering its quality. Each object is regarded as

a singleton cluster, and its projected values are mean centered according to the
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selected dimensions of CI . When calculating the MS score between a singleton

cluster and CI , dmin and Rmin are set as the number and minimum R value

of the selected dimensions of CI , which prevents the quality of CI from being

degraded. All the objects involved in the qualified merges become members of

CI . Since each object is allowed to join multiple clusters, the final clusters are

not necessarily disjoint.



Chapter 4

Experiments and Discussions

In this chapter we report various experimental results of HARP and some

other algorithms in comparison. The first section covers the methods and proce-

dures of the experiments, and the second section covers the experimental results

and some discussions.

4.1 Methods and Procedures

4.1.1 Datasets

We performed experiments on both synthetic and real datasets. Synthetic

datasets were used to test the capability of HARP in dealing with various data

characteristics, while real datasets were used to verify the practicality of HARP

in handling complex real data.

4.1.1.1 Synthetic Data

Table 4.1 lists the default parameters used in synthetic data generation.

When generating a dataset, the size of each cluster and the domain of each

57



CHAPTER 4. EXPERIMENTS AND DISCUSSIONS 58

Parameter Default Values

Dataset size (N) 500

Dataset dimensionality (d) 20

Number of clusters (k) 5

Cluster size (NI) 15% to 25% of N

Average cluster dimensionality (lr) d
k to 0.9d

Domain of dimensions ([minj ,maxj ]) [0,1] to [0,10]

Local S.D. of relevant dimensions (σIj) 3% to 5% of domain

Artificial data error rate (e) 5%

Artificial outlier rate (o) 0%

Table 4.1. Data parameters of the synthetic datasets.

dimension were first determined randomly according to the data parameters.

Having different cluster sizes creates different peak heights at the frequency dis-

tributions, which tests the stability of the histogram-based validation mechanism.

The different domain sizes are to test the importance of the standardization factor

in the relevance index. Each cluster then randomly picked its relevant dimen-

sions, where a single dimension could be relevant to multiple clusters. Since

dimensions that are irrelevant to all clusters can be removed by feature selection

techniques, which are not the major concern of the current study, we made each

dimension to be relevant to at least one cluster.

For each relevant dimension of a cluster, the local mean and standard devia-

tion were chosen randomly from the domain to construct a Gaussian distribution.

Each object in the cluster determined whether to follow the signature according

to the data error rate e. This was to simulate experimental and measurement

errors. If an object followed the signature, a projected value would be generated

from the Gaussian distribution. Otherwise, and for all irrelevant dimensions, the

values would be generated from a uniform distribution over the whole domain.

The default dataset size and dimensionality values (500 and 20) are moderate

in order to allow the extensive experiments to be run in a reasonable time. We

also produced some large datasets to test the scalability of HARP. The results
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will be presented in a later section.

4.1.1.2 Real Data

We performed clustering on a number of real datasets of different types:

Lymphoma: It is a dataset used in studying distinct types of diffuse large B-

cell lymphoma (DLBCL)(Figure 1 of [8]). It contains 96 samples, each with 4026

expression values. The samples are categorized into 9 classes according to the

category of mRNA sample studied. We worked on the transposed dataset with

the genes as the input dimensions, and used HARP to perform distance-based

clustering to produce 9 sample clusters. The transposed dataset was standardized

so that each gene has a zero mean and a unit variance of expression values. This

standardization is not necessary for HARP due to its use of relevance index. It

was performed merely to allow fair comparisons between the results produced by

different algorithms, as to be explained in Section 4.1.6. Each relevant dimension

of a cluster represents a gene that has similar expression levels in the member

samples of the cluster, which is a potential signature of the samples.

Leukemia: It consists of 38 bone marrow samples obtained from acute

leukemia patients [32], 27 of them were diagnosed as ALL (acute lymphoblastic

leukemia) and 11 as AML (acute myeloid leukemia). Each sample is described by

the expression values of 7129 genes. The ALL samples can be further classified

into two classes, one containing 19 B-cell ALL samples (B-ALL), and the other

containing 8 T-cell ALL samples (T-ALL). In [32], the 38 samples are partitioned

into two and four clusters by self organizing maps. In the former case, the two

clusters clearly correspond to ALL and AML samples respectively, with only 4

samples being put into a wrong cluster. In the latter case, AML and T-ALL each

occupies a cluster, and B-ALL occupies the other two. Only two samples are put

into a wrong cluster. We used HARP to perform distance-based clustering on

the transposed dataset to form two sample clusters, and compare the results with
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the ones presented in [32].

Yeast: The original dataset was published in [20]. It contains the expression

levels of 6,218 yeast ORFs at 17 time points taken at 10 minute intervals, which

cover nearly two full cell cycles. The dataset used here is the subset selected

according to [66] that contains 2,884 genes. We preprocessed the data according

to the method suggested in [18], and used HARP to perform pattern-based clus-

tering to produce non-disjoint gene clusters using the two extensions. As in [18],

we treated two genes as similar if they have complementary expression patterns

in the corresponding subspace, i.e., the two genes constantly show opposite rise

and fall patterns across the relevant dimensions. This is accomplished by having

two copies of each gene in the dataset, one with the original expression values,

and the other the negation of them. This results in two nearly identical copies

of every cluster being formed. In the results reporting in the coming sections, all

duplicated clusters and duplicated genes in a cluster are removed.

Food: We also used a food dataset to explore the possible application of

HARP in other domains. It contains the weights and 6 attributes (Fat, Food En-

ergy, Carbohydrate, Protein, Cholesterol and Saturated Fat) of 961 food items1.

We followed [48] to normalize the six attributes by the weight, and standard-

ized each column to have unit standard deviation. Since the dataset contains

no known class labels, we treat the clustering as an exploratory task and report

some interesting findings. We choose to report the results of this dataset because

HARP was able to discover some interesting clusters that could not be found by

a non-projected clustering algorithm.

4.1.2 Comparing Algorithms

To demonstrate the capability of HARP, we compared it with various pro-

jected and non-projected algorithms. For the synthetic datasets, we chose PRO-
1We downloaded the dataset from http://www.ntwrks.com/~mikev/chart1.html.

http://www.ntwrks.com/~mikev/chart1.html
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CLUS [3], ORCLUS [4] and FastDOC [59] as the representatives of projected

algorithms as they have reasonable worst case time complexity and are able to

produce disjoint clusters, which makes it easy to compare the clustering results.

FastDOC creates clusters one at a time. We used it to produce disjoint clusters

by removing the clustered objects before forming a new cluster. After forming

the target number of clusters, the unclustered objects were treated as outliers.

For the non-projected camp, we chose a simple agglomerative hierarchical algo-

rithm, two partitional algorithms CLARANS [55] and KPrototype [41] (based

on k-medoids and k-means respectively), and CAST [13], an algorithm designed

for clustering high-dimensional gene expression profiles. We believe our choice

of algorithms covers a wide spectrum of clustering approaches.

For the real datasets, we mainly compared the results of HARP with those

reported in the corresponding references.

4.1.3 Similarity Functions

We used MS as the merge score of HARP, and Euclidean distance as the sim-

ilarity function of all other projected algorithms as all of them adopt a distance-

based relevance definition. For non-projected algorithms, we used both Euclidean

distance and Pearson correlation to measure object similarity. CAST can only

work with similarity functions that have a finite range, so only Pearson correla-

tion (with range [-1, 1]) was used.

4.1.3.1 Algorithm Parameters

Some of the comparing algorithms require the input of some parameter val-

ues. We compare the performance (accuracy, noise tolerance, etc.) of HARP

with the other algorithms in two aspects:

• The peak performance when correct parameter values are inputted to the
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Algorithm Parameter Values used

CAST t 0.05 to 0.5, 10 values

CLARANS maxneighbor 250

numlocal 5

FastDOC α 1
2k

β 0.1 to 0.25, 4 values

ω 0.02 to 0.1, 5 values

d0 d

MAXITER 100000

ORCLUS α 0.5

k0 15 k

l 10% to 90% of d, 9 values

PROCLUS A 20

B 5

l 10% to 90% of d, 9 values

Table 4.2. Parameter values used in the experiments.

required algorithms, which corresponds to situations where a lot of domain

knowledge is accessible.

• The average performance when a number of reasonable parameter values

are used, and the performance degradation as the inputs deviate from the

correct values. This is to test the applicability of the algorithms in real

situations where only a little domain knowledge is available.

In all the experiments the target number of clusters was set to the number of

real clusters if it was known. For each of the other parameters, various reasonable

values were tried. Table 4.2 lists the user parameters of the algorithms and the

values used. HARP, non-projected hierarchical and KPrototype require no user

parameters except k.

CAST and FastDOC produced the desired number of clusters only at some

specific parameter values. All results that contain fewer than the desired number

of clusters were discarded.
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4.1.4 Execution

Except HARP and the non-projected hierarchical method, all other algo-

rithms do not give deterministic results, i.e., different runs on the same dataset

may give different results. To avoid random bias, we repeated each experiment

of the algorithms five times. For each repeated run, only the result that has the

best algorithm-specific criterion score will be considered in the discussions below.

4.1.5 Evaluation Criteria

We used the Adjusted Rand Index (ARI) [70] as the performance metric for

clustering accuracy when all members of the real clusters are known. It is based

on the Rand Index [61], which measures how similar are the partition of objects

according to the real clusters (U r) and the partitioning in a clustering result

(U c). Denote a, b, c and d as the number of object pairs that are in the same

cluster in both U r and U c, in the same cluster in U r but not U c, in the same

cluster in U c but not U r, and in different clusters in both U r and U c respectively,

Rand Index is defined as follows:

Rand(U r, U c) =
a + d

a + b + c + d
. (4.1)

ARI modifies the Rand Index by taking into account the expected index

value of a random partitioning. It has the following formula:

ARI(U r, U c) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(4.2)

The more similar are the two partitioning (larger a and d and smaller b and

c), the larger will be the ARI value. When two partitioning are identical, the

index value will be one. When a clustering result is only as good as a random

partitioning, the index value will be zero.
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Another important evaluation criterion of projected clustering algorithms is

the accuracy of dimension selection. We used precision and recall to evaluate

how similar are the selected dimensions and the real relevant dimensions. For

each cluster, precision is the number of real relevant dimensions being selected

divided by the total number of selected dimensions. Recall is the number of real

relevant dimensions being selected divided by the actual number of real relevant

dimensions of the majority class. The reported value of a clustering result is the

average of all the clusters.

We also measured the importance of subspace finding in the analysis of

real datasets by calculating the change of within-cluster and between-cluster

distances due to dimension selection. For each projected cluster, we computed

the following three distance ratios:

A1(CI) =
P

xi∈CI,vj∈VI
(xij−xIj)

2/dIP
xi∈CI,vj∈V (xij−xIj)2/d

(4.3)

A2(CI) =
P

xi∈CI,vj /∈VI
(xij−xIj)

2/(d−dI)P
xi∈CI,vj∈V (xij−xIj)2/d

(4.4)

A3(CI) =
P

xi /∈CI,vj∈VI
(xij−xIj)

2/dIP
xi /∈CI,vj∈V (xij−xIj)2/d

(4.5)

A1 measures the increase in compactness of the cluster due to dimension

selection, A2 measures how irrelevant are the non-selected dimensions, and A3

measures the increase in separation of the cluster members from other objects

due to the selection. For a good cluster, A1 should be smaller than one, A2

should be greater than one, and A3 should be larger than A1.

For pattern-based clustering, we will use the mean squared residue score H

introduced in Section 2.3.1 to evaluate the quality of clusters. A smaller H score

indicates a less severe deviation from the perfect cluster model, which indicates

a better cluster. Obviously, clusters with smaller sizes are more likely to receive

small H scores. We will therefore augment the comparison results with the sizes

of the clusters.
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Algorithm Without standardization With standardization

FastDOC 0.78 1.00

HARP 1.00 1.00

ORCLUS 0.72 0.98

PROCLUS 0.86 0.94

Table 4.3. ARI values of the clustering results of the projected algorithms with and
without standardization.

4.1.6 Data Preprocessing

When introducing the relevance index, we claimed that the variation of

global variance across different dimensions could mislead the dimension selection

mechanism. To verify this claim, we generated an “easy-to-cluster” dataset with

lr = 12 and o = 0. We tested the clustering accuracy of the projected algorithms

FastDOC, HARP, ORCLUS and PROCLUS with and without standardizing the

values of each dimension, using correct user parameter values (for FastDOC,

various parameter values were tried and the best result is reported). Table 4.3

shows the ARI values of the results.

With the global variance taking into account in the R index, the performance

of HARP is invariant to the standardization process. For all the other methods,

the clustering accuracy was improved by standardization. This confirms the

importance of the standardization factor in R. For fair comparisons, all the

synthetic datasets used in the coming sections were standardized.

4.1.7 Outlier Handling

From the preliminary experiment for studying the importance of data stan-

dardization, we noticed that FastDOC tends to discard an unnecessarily large

amount of outliers. For the two reported results, 67% and 31% of objects were

left unclustered, even the dataset contains no artificial outliers. According to [4]
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and our other experimental results, PROCLUS also has a similar problem in

some situations. In order to give a fair comparison of the clustering results, ex-

cept otherwise specified, the synthetic datasets used in the coming experiments

contain no artificial outliers, and the outlier removal options of all algorithms

were disabled. For CAST and FastDOC, the unclustered objects were still dis-

carded as outliers, and we accept only results with discarding rates not more than

40%. To show the noise-immunity of HARP, there will be a separate subsection

dedicated to experiments on noisy data.

4.2 Results and Discussions

4.2.1 Results on Synthetic Data

4.2.1.1 Clustering Accuracy

The first set of experiments concerns how the clustering accuracy is affected

by cluster dimensionality lr. We generated eight datasets with lr ranging from 4

to 18, which account for 20% to 90% of the dataset dimensionality. For clarity,

we present the results in four different charts in Figure 4.1 and Figure 4.2. In

the charts, and in the other figures to be presented later, lines labeled “best”

and “average” represent the results of an algorithm with the highest ARI values

and the average result obtained by trying all the parameter values specified in

Table 4.2 respectively. Since CLARANS, HARP, Hierarchical and KPrototype

did not need to try on multiple sets of parameter values, only one line is presented

for each of them.

Figure 4.1a shows the best results of the algorithms. Most algorithms were

highly accurate at large lr values, but for lr values lower than 50% of d, the

performance difference between them became apparent. HARP got the highest

ARI values among all the algorithms on all the datasets, and remained highly

accurate even each cluster had 80% of the dimensions being irrelevant to them.
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(a) The results with the highest ARI values of each algorithm.
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(b) Comparing the results with the highest ARI values with the average results
of the projected clustering algorithms using different parameter values.

Figure 4.1. Clustering results on datasets with different cluster dimensionalities.
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(b) Clustering accuracy of PROCLUS and ORCLUS.

Figure 4.2. Clustering results on the dataset with lr = 8, using various user
parameter inputs.
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The results of ORCLUS reported in [4] are better than the current results, which

is likely caused by the small sizes of our synthetic datasets since ORCLUS works

well on large datasets that contain sufficient values for performing PCA, but its

performance on small datasets is less competitive. FastDOC continued to discard

a large amount of non-outlier objects, with an average discarding rate of 26.3%,

which equals the size of one to two complete clusters.

In general the projected algorithms outperformed the non-projected ones

at small lr values, but some good results were due to the correct input of pa-

rameter values. Figure 4.1b compares the best and average results of FastDOC,

ORCLUS and PROCLUS after trying different parameter values. The average

results have much lower ARI values than the best results, which means when

incorrect parameter values are used, the performance of the algorithms could be

greatly affected. In many applications, it is hard for users to know the correct

parameter values. Furthermore, as explained before, the objective scores of the

results may not be useful in choosing the best parameter values to use, since they

may bias towards clusters with low dimensionalities (Figure 4.2a). This means in

real situations if the correct parameter values are unknown, the optimal results

can hardly be obtained. Figure 4.2b shows the typical fluctuation of accuracy of

PROCLUS and ORCLUS with various parameter inputs, taken from the results

on the dataset with lr = 8. Both algorithms achieved their peak performance

when correct inputs were supplied, but the error rates raised as the inputs moved

away from the correct values. For HARP, the accuracy is independent of user

inputs.

From Figure 4.1b, it is also noted that even supplied with correct parameter

values, PROCLUS and ORCLUS were unable to achieve very good accuracy

at small lr values. This is due to the formation of incorrect tentative clusters

caused by object assignments that depend on distance calculations in the input

space. In contrast, by allowing only merges with maximum number of selected

dimensions, HARP was able to avoid forming incorrect tentative clusters during
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(b) Recall of the selected dimensions.

Figure 4.3. Accuracy of the selected dimensions of the results produced by Fast-
DOC, HARP and PROCLUS.

the early stage of clustering.

Next we investigate the selected dimensions of the projected clustering algo-

rithms. Figures 4.3a and 4.3b show the average precision and recall of the selected

dimensions of the results produced by FastDOC, HARP and PROCLUS.

Interestingly, HARP behaved differently at different lr values. For clusters

with high dimensionalities, HARP tended to be conservative in dimension se-

lection as reflected by the high precision and relatively low recall. This means

HARP deliberately avoided selecting irrelevant dimensions when the selected

ones were enough for identifying cluster members correctly. However, at low lr
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values, HARP tried to include all relevant dimensions in order not to miss any

useful information, with the expense of also selecting some irrelevant dimensions.

We argue that this is acceptable as recall is more important than precision when

lr is small since missing a single relevant dimension may mean missing a substan-

tial proportion of information, while including a few irrelevant dimensions has

only a moderate effect to the clustering accuracy if the signatures at the relevant

dimensions are clear enough to identify the cluster members. If the accuracy of

selected dimensions is critical to an application, a post-processing step can be

carried out to rank all the dimensions of each cluster based on the R values, and

filter out the unwanted dimensions according to the application-specific needs.

The best results of FastDOC are characterized by excellent precision and fair

recall over the whole range of lr values. This means it tends to be parsimonious

in dimension selection, which can be a great problem when lr is small. The

behavior of the best results of PROCLUS is similar to those of HARP, but it

is relatively less stable. On the other hand, as expected, the average results of

PROCLUS are not satisfactory except at very large lr values.

4.2.1.2 Imperfect Datasets

Although the above experiments show that HARP is highly accurate and

usable, the synthetic datasets used are too ideal with no outliers (o = 0), a low

error rate (e = 5%) and clear signatures (σIj = 3 − 5% of domain). In the

coming experiments we demonstrate the influence of these data parameters on

the clustering accuracy.

We fix lr to 6 (30% of d) since at this value the performance difference

between projected and non-projected algorithms becomes clear. We generated

three sets of data, with increasing o, e and σIj respectively. We tested the

performance of HARP, using PROCLUS and ORCLUS (with correct parameters

supplied) as reference. The results are shown in Figure 4.4.
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(c) Clustering accuracy with various spread of signature values.

Figure 4.4. Clustering results of HARP, ORCLUS and PROCLUS on imperfect data.
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Figures 4.4a shows the ARI values of the algorithms with the presence of out-

liers. HARP remained highly accurate, and the amount of objects discarded by

the outlier handling mechanism was found to highly resemble the actual amount

of outliers with only a little over-discarding. In comparison, ORCLUS and PRO-

CLUS discarded more objects and had unsatisfactory clustering accuracies. OR-

CLUS appears to be very sensitive to outliers, which may due to the fact that

in latter iterations ORCLUS picks the cluster seeds from the centroids of the

cluster. When the clustering accuracy is low, each cluster consists of objects

from many different real clusters and the centroids will be a mixture of their

signatures. As a result, the centroids will be similar to each other, but dissimilar

to any object in the dataset. This phenomenon ruins the outlier removal mecha-

nism of ORCLUS (which removes objects that have a longer projected distance

from the seed of its assigned cluster than the projected distance between the seed

and its closest seed), causing it to discard a substantial amount of objects.

Figure 4.4b shows the results with increasing amount of data errors. The

figure shows that the accuracies of all three algorithms went down as more errors

were introduced, but HARP only had a mild deterioration. Similarly, Figure 4.4c

shows that as the cluster signatures became less focused, HARP only had a gentle

decrease in accuracy. The sudden drop of accuracy of PROCLUS at 11% was

due to a biased selection of medoids.

4.2.1.3 Scalability Experiments

In this section we study the scalability of HARP with increasing dataset

size and dimensionality. We tested the performance of HARP on two sets of

data, the first with N increasing from 1000 to 500000 (using Conga line as cache

structure), and the second with d increasing from 100 to 500 and average cluster

dimensionality kept at 30% of d.

The results with increasing dataset size are shown in Figure 4.5. Part a
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shows that the accuracy of HARP was unaffected by the dataset size, and part b

confirms that the actual execution time was bounded by the theoretic time com-

plexity. For medium-sized datasets (N ≈ 10000), the execution time was usually

better than ORCLUS and FastDOC. When the time used in repeated runs for

avoiding random bias and trying different parameter values is also included, the

execution time of HARP was also comparable to PROCLUS. We also tested if

the sample-based speedup technique described in Section 3.5 is feasible. Cluster-

ing was performed on the dataset with 10000 objects using various sample sizes.

From the results shown in Figure 4.5c, for reasonable sample sizes, the execution

time was much improved with only a little impact on the accuracy.

The results with increasing dataset dimensionality are shown in Figure 4.6.

Again, part a shows that HARP is accurate at various dataset dimensionalities,

and part b shows that the execution time was sub-quadratic with respect to d.

It should be noted that most existing projected clustering algorithms would find

difficulty in clustering these datasets since the dataset dimensionality is large

and thus the number of relevant dimensions of each cluster is hardly predictable.

Figure 4.6c shows the results on the dataset with 500 dimensions, speeding up

by using fewer threshold levels. The execution time was greatly reduced, but the

clustering accuracy remained excellent.

4.2.2 Results on Real Data

4.2.2.1 Lymphoma

We now present the experimental results on the real datasets. For the lym-

phoma data, we used HARP and PROCLUS as the representatives of projected

clustering algorithms. The results with the best ARI values of each algorithm

are shown in Table 4.4.

HARP got the best ARI score, even its clustering process was not guided

by user parameters. We investigated the importance of dimension selection in
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Figure 4.5. Clustering results of HARP with various dataset sizes.
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Figure 4.6. Clustering results of HARP with various dataset dimensionalities.
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Algorithm Best ARI

HARP 0.75

PROCLUS 0.64

KPrototype 0.63

CLARANS 0.61

Hierarchical 0.49

CAST 0.48

Table 4.4. The best ARI values achieved by various algorithms on the lymphoma
data.

the formation of the clusters by calculating the distance ratios A1 to A3 of them.

Table 4.5 lists the ratios of some interesting clusters located at the top two levels

of the dendrogram. All of them satisfy the three requirements listed in Sec-

tion 4.1.5, which means the selection of relevant dimensions makes the cluster

members more distinguishable. For each cluster of samples, we also randomly

selected 100,000 sets of relevant dimensions and calculated the corresponding

distance ratios. All the resulting ratios are very close to one with standard de-

viations not more than 10−5, which verify that the relevant dimensions selected

by HARP are statistically unexpected and significantly better than random se-

lections.

The results in Table 4.4 also reveal that projected clustering algorithms

(HARP and PROCLUS) performed better than non-projected algorithms on this

dataset, but the performance difference is not prominent. This may be explained

by the large numbers of selected genes of the clusters listed in Table 4.5, which

range from 61% to 90% of the dataset dimensionality. According to our previous

results shown in Figure 4.1, projected clustering algorithms only have moderate

advantage over non-projected algorithms in this range of lr values.

We then examined the biological meaning of the relevant dimensions of the

clusters. In Figure 2 of [8], some genes are highlighted as the signatures of some

sample types or biological processes. The genes are divided into four regions:



CHAPTER 4. EXPERIMENTS AND DISCUSSIONS 78

Samples No. of selected genes A1 A2 A3

6 RAT 2456 0.72 1.32 0.87

43 DLBCL, 2 NILNT 3515 0.96 1.25 1.02

10 ABB, 1 TCL 2734 0.80 1.32 1.00

9 FL, 2 GCB, 2 RBB 3104 0.85 1.38 1.00

11 CLL, 2 RBB 2614 0.82 1.27 0.97

16 DLBCL 3347 0.90 1.38 1.01

27 DLBCL, 2 NILNT 3610 0.96 1.32 1.00

Abbreviations: ABB=activated blood B, CLL=mantle cell lymphoma and
chronic lymphocytic leukemia, DLBCL=diffuse large B-cell lymphoma,
FL=follicular lymphoma, GCB=germinal centre B, RAT=resting/activated T,
RBB=resting blood B, NILNT=NI. lymph node/tonsil, TCL=transformed cell
lines.

Table 4.5. The distance ratios of some interesting clusters identified by HARP
from the lymphoma data.

proliferation, germinal centre B, lymph node and T cell. For each cluster formed

by HARP, we sorted all the genes in descending order according to their R values,

and checked the ranks of the signature genes. It was found that the large DLBCL

cluster has many signature genes in the proliferation region receiving high ranks,

which suggests that the expression values of the genes could potentially be used

to identify DLBCL samples. Similarly, it was found that the resting/activated T

samples have a distinctive expression pattern. The 6 samples form a clear cluster

with many of the signature genes receiving very large R values. Activated blood

B, FL and CLL samples formed three separate clusters consisting of few samples

from other types. They all have large R values at the signature genes at the

lymph node region due to the constantly low expression, but the three types

of samples were successfully separated into different clusters according to the

expression values of other relevant genes, in particular those in the germinal

centre B region. A complete list of the ranks and R values of the signature genes

in different clusters can be found at http://www.csis.hku.hk/~ylyip/harp/.

http://www.csis.hku.hk/~ylyip/harp/
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4.2.2.2 Leukemia

In [32], 50 informative genes that have very different expression patterns

in the two classes are used to build a highly accurate classifier. This suggests

that a very small number of relevant genes are enough to distinguish the two

types of samples. We therefore initialized dmin to 50 in order to select a small

set of highly relevant genes for each cluster. Notice that unlike setting the l

parameter of PROCLUS and ORCLUS, initializing dmin to a certain value does

not force HARP to select any specific number of genes for each cluster. HARP

is free to select any number of genes not less than dmin. The setting simply

suggests HARP to focus on the genes with larger R values. With this setting,

HARP produced one cluster that contained only ALL samples and the other

contained mainly AML samples with only 3 errors (ARI: 0.71), which is a mild

improvement over the clustering result presented in [32] (4 errors, ARI: 0.62).

The ALL and AML clusters identified by HARP have 112 and 59 selected genes

respectively, both with average R values of 0.95, which indicate the extremely

high distinguishing power of the genes. By examining the dendrogram, we also

found that the 8 T-ALL samples formed its own cluster before merging with

any B-ALL samples. The pure T-ALL cluster has 151 selected dimensions with

average R value of 0.99, which are potential signature genes for distinguishing

T-ALL from the other two types of samples.

We then calculated the distance ratios A1 to A3 of the two final clusters and

the T-ALL cluster (Table 4.6). Comparing the ratios with those of the lymphoma

clusters (Table 4.5), the A1 ratios are much lower and the A3 ratios are much

higher. This indicates that dimension selection is more beneficial to the leukemia

dataset by making the clusters more compact and more distant from each other.

In contrast, the A2 ratios are just slightly larger than one since only a small

amount of dimensions are selected for each cluster, which means object distances

in the non-selected subspace are not much different from those calculated in the

input space.
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Samples No. of relevant genes A1 A2 A3

16 B-ALL, 8 T-ALL 112 0.40 1.01 2.97

11 AML, 3 B-ALL 59 0.35 1.00 2.81

8 T-ALL 151 0.24 1.01 2.07

Table 4.6. The distance ratios of the two final clusters and the pure T-ALL cluster
identified by HARP from the leukemia data.

Algorithm Avg. no. Avg. no. of Avg. H Avg. score

of genes time points score to size ratio

Cheng and Church 167 12 204 0.10

HARP 243 10 203 0.08

Table 4.7. Comparison of the clusters identified by HARP and those reported
in [ 18] from the yeast data.

4.2.2.3 Yeast

Next we performed pattern-based clustering on the yeast dataset. We used

HARP to produce about 100 distinct clusters and compared them with the 100

biclusters discovered in [18]. Table 4.7 compares some statistics of the two sets

of clusters. On average the clusters produced by HARP contain more genes but

fewer time points. They also have a slightly better average squared residue score

to size (number of genes multiplied by number of time points) ratio. Figure 4.7

and Figure 4.8 show the clusters with the best absolute scores and score to

size ratios. According to the results, HARP was able to identify clusters with

diverse sizes and dimensionalities. It also successfully grouped together genes

with similar expression patterns but in opposite directions. The average size of

the clusters also suggests that a significant number of genes were assigned to

multiple clusters with matched signatures.

We evaluated the biological significance of the clusters by a phenotypic cate-
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Figure 4.7. The clusters identified by HARP from the yeast data with the best mean
squared residue scores.

Figure 4.8. The clusters identified by HARP from the yeast data with the best mean
squared residue score to size ratios.
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Category: genes

Budding, directional growth: YDR507C

Cell cycle regulators: YPL256C, YJL187C

Chromosome, nuclear segregation: YMR076C, YDL003W, YKL042W, YMR078C

DNA repair and recombination: YLR383W, YDR097C

DNA replication: YOR074C, YLR103C, YAR007C, YNL312W, YDL164C, YBR088C

Table 4.8. One of the clusters (cluster 53, no. of genes=22) identified by HARP from
the yeast data that contains a significant amount of genes from related categories
(all in late G1 phase).

gorization of mRNAs that are regulated with the cell cycle2. Some clusters were

found to contain a significant amount of genes from related categories. One such

clusters is shown in Table 4.8, which contains many categorized genes in the late

G1 phase, with functions ranging from budding, cell cycle regulation, nuclear

segregation to DNA replication and repair.

4.2.2.4 Food

For the food data, we used HARP to produce twenty clusters. Some inter-

esting clusters are summarized in Table 4.9. For example, one of them contains

all twelve margarine items in the dataset, which strongly suggests that the clus-

ter is meaningful. Three of the dimensions have high relevance index values and

were selected by HARP. However, the index values of the other three dimensions

are low and were therefore not selected. This means the margarine items are

close in the selected three-dimensional subspace, but may not be close in the

input space. We verified this by performing ten rounds of KPrototype on the

data. In all cases, the twelve items were distributed to two or more clusters,

which suggests that the non-projected clustering algorithm may not be able to

produce the same interesting cluster.
2http://yscdp.stanford.edu/yeast_cell_cycle/functional_categories.html

http://yscdp.stanford.edu/yeast_cell_cycle/functional_categories.html
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Members Items Selected dimensions (mean, R value)

Bread and cereal 93 Fat (-0.43, 0.98)

Food Energy (0.48, 0.94)

Cholesterol (-0.38, 1.00)

Saturated Fat (-0.45, 0.99)

Cake and muffin 22 Fat (-0.04, 0.98)

Food Energy (0.52, 0.96)

Protein (-0.14, 0.95)

Saturated Fat (-0.08, 0.98)

Vegetable oil 18 Fat (4.31, 1.00)

Carbohydrate (-0.95, 1.00)

Protein (-0.78, 1.00)

Cholesterol (-0.22, 0.80)

Margarine and salad dressing 13 Carbohydrate (-0.95, 1.00)

Protein (-0.75, 1.00)

Cholesterol (-0.38, 1.00)

Salted and unsalted butter 6 Carbohydrate (-0.95, 1.00)

Protein (-0.75, 1.00)

Saturated Fat (7.06, 1.00)

Table 4.9. Some interesting clusters identified by HARP from the food data.
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4.2.2.5 Other results

Besides the results presented above, we have also conducted experiments on

a number of gene expression datasets from which the results are less encouraging.

On one extreme, some of the datasets can easily be clustered by non-projected

clustering algorithms, which means that similarity calculations in the full input

space are effective enough to distinguish the members of each cluster without per-

forming dimension selection. On the other extreme, the clusters in some datasets

are hard to determine even by supervised learning algorithms. For example, in a

study of central nervous system embryonal tumor [58], a dataset was generated

that contains two types of medulloblastoma samples: classic and desmoplastic.

HARP was unable to separate the two types of samples to different clusters. We

analyzed the dataset and discovered that a large proportion of dimensions (genes)

has very low R values in the real cluster of classic medulloblastomas. Among

the 7129 dimensions, the R values of 5575 (78%) are negative. This means the

samples of the classic group have very different expression patterns, which may

suggest subgroups within the samples. The situation for the desmoplastic group

is much better, with only 1445 (20%) of the dimensions having negative R values.

Unfortunately, some of the desmoplastic samples are very similar to some classic

samples, even more similar than to other desmoplastic samples. This hinders

the formation of a pure desmoplastic cluster before merging with other clusters

that contain classic samples, which, if being formed, could be observed from the

dendrogram.

According to all the experimental results, we believe that projected clusters

do exist in some gene expression datasets. More importantly, HARP outperforms

non-projected algorithms on these datasets, while it has comparable performance

on the datasets where projected clusters appear to be absent. This strongly

supports the use of HARP in gene expression data analysis.



Chapter 5

Further Discussions and

Future Works

The results on the gene expression datasets show that HARP is able to

identify statistically and biologically meaningful clusters without the aid of user

parameters. The algorithm is thus especially useful when there is a large number

of datasets to analyze or when there is little knowledge about the datasets, when

time-consuming parameter tuning is not possible. In such situations, HARP

can be used to automatically identify some interesting clusters for later, more

labor-intensive analysis.

The dynamic threshold loosening mechanism of HARP is shown to be suc-

cessful in avoiding the introduction of user parameters. Although the current

loosening scheme is only a simple synchronous linear interpolation of the two in-

ternal thresholds, the results are already quite encouraging. We believe the con-

cept of dynamic parameter tuning has a great potential in projected clustering

and other problems to which the solutions usually rely on some user parameters.

The experimental results on synthetic data suggest that projected cluster-

ing has a pronounced advantage over non-projected clustering only when the
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dimensionalities of the clusters are well below the dataset dimensionality. We

recommend further studies on projected clustering to focus on datasets with av-

erage cluster dimensionalities not more than 30% of d. In some gene expression

data, the number of relevant genes of each function group can be lower than

10% of the total number of genes involved in the experiments. As shown in Fig-

ures 4.1a, and 4.1b, most projected clustering algorithms are unable to correctly

cluster datasets with lr much smaller than d. HARP is relatively superior in

such situations, but its performance can also get worse when lr is as low as 10%

of d. One way to deal with the problem is to initialize dmin to a small value, as

what we did when working on the leukemia data. While this resulted in some

nice results in this particular case, the solution is feasible only when there are

some knowledge of the suitable initialization value (or range of values) of dmin.

On the other hand, the bottom-up searching approaches described in Sec-

tion 2.1.1 are designed for clusters of low dimensionality, which seem to be more

suitable for analyzing such datasets. Unfortunately, while the ratio lr

d is low, the

absolute value of lr can still be too high for these algorithms to handle due to

their exponential time complexity with respect to cluster dimensionality. For in-

stance, if 10% of genes are relevant to a cluster of samples in a small dataset that

records the expression values of only 2000 genes, the dimensionality of the cluster

would be 200. This means dense regions could be found in 2200 − 1 non-empty

subspaces, which is intractable for the current subspace clustering algorithms.

Further improvements of projected clustering algorithms are called for.

One possible way is to use a small amount of external inputs to greatly re-

duce the size of the search space. When working on gene expression datasets,

we noticed that it is common to find some domain knowledge that can guide the

clustering process, but the knowledge is not sufficient for supervised learning.

For example, a general problem of hierarchical clustering algorithms is that to-

wards the end of clustering, some clusters containing objects from different real

clusters could be forced to merge together due to the presence of small outlier
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clusters. The resulting clustering accuracy could drop substantially due to the

incorrect merge. This unfavorable situation could be avoided if a little domain

knowledge is applied to disallow the merging of the clusters by identifying that

they contain objects known to come from different real clusters. The domain

knowledge can be applied directly by the users, or extracted from the rich exter-

nal information sources such as sequence (e.g. GenBank [14]), annotation (e.g.

Gene Ontology [11]) and literature (e.g. PubMed [1]) databases. In the com-

puter science community, some works have been started on this semi-supervised

clustering problem (see for example [46, 67]). We believe the application of this

technique in gene expression data analysis will soon become a hot research topic.

As mentioned in Section 1.3, feature selection techniques alone cannot solve

the projected clustering problem since they do not determine a separate subspace

for each cluster. However, when a dataset contains some noise dimensions that

are irrelevant to all clusters, or when the clusters are not axis-parallel, dimension

reduction methods such as principal component analysis (PCA) or independent

component analysis (ICA) can be useful in filtering and transforming the data for

projected clustering. There have been some studies on the effectiveness of such

techniques on gene expression data [50, 70]. A future work of the current study

is to compare the clustering results of projected and non-projected algorithms

on gene expression data with and without performing such data preprocessing.

One difficulty that we have encountered during the study is to develop a

formal procedure for evaluating the statistical significance of projected clusters.

Functions developed for internal validation of non-projected clusters that require

the generation of random clusters (e.g. U-statistic [42]) become computationally

infeasible in the projected case. This is because in order to gather sufficient data

of a cluster for statistical calculations, not only should the generated clusters

have the same size as the target cluster, they should also share the same number

of selected dimensions with it. As a result an extraordinarily large number of

clusters have to be generated, which takes a huge amount of time, especially
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as projected clustering algorithms are generally less efficient than their non-

projected counterparts.

In fact, evaluation of clustering results and the robustness of algorithms has

become an important topic of bioinformatics research due to the vast amount

of clustering algorithms available and the lack of clear guidelines on which algo-

rithms to use under different situations. There are some recent studies on the

topic based on the consistency of algorithms when different data attributes are

deleted [21, 71], but as far as we know no similar methods have been proposed

for projected clustering. We leave this topic as a future extension of the current

study.

Likewise, we have encountered difficulties when trying to develop an objec-

tive score for projected clustering that is not biased by cluster dimensionality.

We have tried to tailor the Davies-Bouldin Index (DBI) [22] to take care of

dimension selection. We believed the DBI is more robust than the W p score

since it also considers the separation between different clusters. While we have

successfully proved that the resulting function does not have the monotonically

non-increasing property of the W p score (Section 2.2), i.e., its value may become

worse by deselecting some selected dimensions, empirical results show that it is

still biased by cluster dimensionality, although not as severe as the W p score.

We look forward to other proposals for the evaluation functions.

The object assignment extension produced some nice non-disjoint clusters

on the yeast dataset, but in general some important clusters can be missed if their

structures are not captured by some disjoint clusters before object assignment.

We propose two future extensions of HARP for identifying these clusters: to

allow each cluster to be merged with multiple clusters, and to produce disjoint

clusters on different small data samples, and then reassign other objects to the

clusters. Both approaches allow the discovery of more projected structures.

The quality of the yeast clusters produced by HARP is comparable to those
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produced by the Cheng and Church algorithms, which were designed to optimize

the pattern-based objective score. This suggests that non-projected clustering

methods that assume distance-based object similarity can also be used in pattern-

based clustering. Actually, in non-projected clustering, it can be easily proved

that by standardizing a dataset such that each row has zero sum and unit sum

of squares, the Euclidean distance between two objects in the transformed data

is equal to 2− 2r, where r is the Pearson correlation between the objects in the

original data [9]. This means the Euclidean distance between two objects in the

transformed data reflects the dissimilarity between the rise and fall patterns of

the objects in the original data. The pattern-based clustering problem is thus

transformed to a distance-based clustering problem by the standardization pro-

cess. The situation is more complicated in the projected case in that each cluster

has its own set of relevant dimensions. As discussed in Section 3.6, standard-

ization should be performed based on the projected values on such dimensions

only. The trickiest thing is that the real relevant dimensions are unknown when

standardization is performed. It becomes even more complicated when clusters

are non-disjoint, at which a single projected value is subject to the standardiza-

tion process of all the clusters that it is involved. We leave the more advanced

methods of adaptive subspace standardization as a future work on the topic.

Using the speedup methods, typical gene expression datasets could be ana-

lyzed by HARP very efficiently. However, the adaptive readjustment of expres-

sion values in the pattern-based clustering extension requires heavy computa-

tions, which greatly lowers the efficiency of HARP. We will look for methods

that can efficiently perform adaptive readjustment in further studies. Also, after

each threshold loosening, O(N2) merge score calculations are required due to the

change of the two thresholds. We will try to modify the definition of the merge

score function such that components calculated in previous threshold levels can

be reused to potentially save a substantial amount of time spending on merge

score calculations.
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All the algorithms considered in this thesis are memory-residence. As more

and more microarray experiments are performed and the density of spots on each

DNA chip becomes higher and higher, the size of gene expression datasets may

soon become too large to be analyzed fully in main memory. A lot of efforts

have been paid on storing gene expression profiles in databases, but there are

few studies on the development of disc-based projected clustering algorithms.

The need would probably become apparent in the near future.

Another issue related to the speed performance of clustering algorithms is

whether they can be parallelized. There have been extensive studies on paral-

lelized traditional clustering algorithms [49, 56]. It can be easily observed that

there are plenty of rooms to improve the speed performance of HARP by par-

allelization. For instance, the O(n2) similarity scores in each threshold level

can well be computed in parallel by different machines. At the current stage,

most works on gene expression data clustering are concentrated on the quality

of the results. Most projected algorithms are under rigorous improvements by

new algorithms. When some existing algorithms become stable and more widely

accepted, the focus may shift to the speed performance of the algorithms, which

may lead to more works on the parallelization of projected clustering algorithms.

In this thesis, as in most studies on projected clustering, datasets are as-

sumed to contain numeric values only. This is a valid assumption in the current

study since most gene expression datasets are numerical. In some other appli-

cations, datasets may contain categorical attributes. The signatures of a cluster

then resemble a rule in a decision tree [60], but they are discovered without us-

ing the information of class labels. In a preliminary study, we modified HARP

to handle categorical data by replacing the relevance index RIj by the formula

1− 1−LocalModeRatioIj

1−GlobalModeRatioIj
, where LocalModeRatioIj is the ratio of objects in cluster

CI having the mode value of attribute vj of the cluster, and GlobalModeRatioIj

is the ratio of objects in the whole dataset having that value. The R∗
Ij score of

a new cluster is redefined as the average of the RIj scores of the two merging
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clusters. As in the numeric case, RIj measures how similar are the members of

cluster CI at attribute vj and how unlikely the similarity is due to the abundance

of the attribute value globally. A new cluster has a high R∗
Ij score if and only if

the two merging clusters both have a high RIj score, and their mode values at

attribute vj are the same. Essentially, the categorical version of the two functions

captures the original ideas of the numerical version. Some initial experimental

results show that the resulting algorithm has a performance close to the state-of-

the-art categorical clustering algorithm ROCK [34] on some synthetic datasets

as well as two real datasets Voting and Mushroom from the UCI machine learn-

ing repository [2]. We will look for some real categorical datasets that contain

subspace clusters to extend the study of projected clustering on categorical data.



Chapter 6

Conclusions

In this thesis, we reviewed the various problems of finding clusters in sub-

spaces and some proposed approaches to the problems in the literature. In

particular, we analyzed the major challenges of the projected clustering prob-

lem, and suggested the reasons for the dependence of some existing projected

clustering algorithms on user parameters. Based on the analysis, we proposed

a new projected clustering algorithm HARP that does not depend on user in-

puts in determining the relevant dimensions of clusters, which makes it prac-

tical for applications where the correct values of the parameters are unknown.

HARP makes use of the relevance index, histogram-based validation and dy-

namic threshold loosening to dynamically adjust the merging requirements of

clusters according to the current clustering status. It can also be extended to

perform pattern-based clustering and produce non-disjoint clusters by adaptive

mean-centering and post-clustering object assignment respectively. The experi-

mental results on synthetic data suggest that HARP has a higher accuracy and

usability than the projected and non-projected algorithms being compared, and

it remains highly accurate on noisy datasets and datasets that contain imperfect

clusters. The experimental results on real datasets show that HARP works well

in situations where object similarity is based on either distance or expression
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pattern, and where disjoint or non-disjoint clusters are required. The clusters

identified are both statistically and biologically meaningful. We also discussed

the limitations and some possible future research directions of HARP and other

projected clustering algorithms.

To increase the utility and evaluation of HARP, we are in the process of

establishing a seamless interoperation between the Yale Microarray Database [19]

and HARP through the use of XML-based web services. This allows the users

of YMD to extract data from the microarray experiments of their interest and

send the data directly to the remote HARP web service for cluster analysis.



Appendix A

How Likely is a Cluster

Correct?

Consider two clusters Cc and Ci of equal size n, where the objects in Cc

come from the same real cluster with dI relevant dimensions, while the objects

in Ci are randomly sampled from the dataset. All dimensions are regarded as

irrelevant to Ci. Suppose the relevance threshold Rmin is fixed at a value such

that the probabilities for each real relevant dimension and each real irrelevant

dimension to be selected are p and q respectively. Assume p = γq, where γ ≥ 1.

Now, given a cluster C chosen from the two clusters, we want to determine how

likely C is in fact Cc in comparison to Ci if C has l selected dimensions.

Denote P(c) and P(i) be the probability that C is Cc and Ci respectively,

and P(l) be the probability that a cluster of n objects has l selected dimensions.

By Bayes’ theorem,

P (c|l) =
P (l|c)P (c)

P (l)

=
P (l|c)P (c)

P (l|c)P (c) + P (l|i)P (i)
. (A.1)
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Similarly,

P (i|l) =
P (l|i)P (i)

P (l|c)P (c) + P (l|i)P (i)
. (A.2)

Dividing A.1 by A.2, we get the relative probability for C to be Cc over Ci:

P (c|l)
P (i|l)

=
P (l|c)P (c)
P (l|i)P (i)

∝ P (l|c)
P (l|i)

=

∑
0≤r≤l∧l+dI−d≤r≤dI

(
dI
r

)
pr(1− p)dI−r

(
d−dI
l−r

)
ql−r(1− q)d−dI−l+r(

d
l

)
ql(1− q)d−l

=
1(
d
l

) ∑
0≤r≤l∧l+dI−d≤r≤dI

(
dI

r

)(
d− dI

l − r

)
γr(

1− γq

1− q
)dI−r, (A.3)

where r is the number of real relevant dimensions of Cc being selected. Figure A.1

shows the plot of the relative probability against different l/d and γ values.

Six curves are shown in each figure, which correspond to different dI and p

value combinations. In Figure A.1a, the relative probability is shown to be

monotonically increasing as l/d increases, which means the probability for a

cluster to be correct is always higher if it has more selected dimensions. When

l = d, the relative probability reaches its maximum value of γdI . The figure also

shows that as l/d decreases, the relative probability has a sharper drop along the

curves with higher p values. This is because when p is large, it is very unlikely

that a large number of relevant dimensions are not being selected.

Figure A.1b shows that the relative probability has a general increasing trend

as γ increases except when γ is small and p is large. Suppose the projected values

of a relevant dimension and an irrelevant dimension are generated according to

a Gaussian distribution and a uniform distribution respectively, it can be shown

that γ increases monotonically as Rmin increases at large Rmin values. This

means when Rmin is sufficiently large, the relative probability is generally higher

when Rmin is larger. The abnormal declination of the relative probability when
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Figure A.1. A plot of the relative probability against different l/d and γ values
(d = 20).
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γ is small and p is large is explained by Figure A.1c, which is a magnification of

Figure A.1b at the region γ ∈ [1, 1.5]. The nadir occurs when γ = 1.3, which is

close 1.4, at which l/d (= 0.5) equals the expected portion of selected dimensions

in Ci (q = p/γ = 0.5). Preceding to the minimum point, l is smaller than the

expected number of selected dimensions of Ci, especially when p, and thus q,

is large. Increasing γ effectively lowers the expected number, which makes C

more likely to be Ci. The effect on Cc is much smaller as its expected number

of selected dimensions is greatly determined by p, which remains unchanged.

Beyond the minimum point, further increasing γ will make C to have more

selected dimensions than the expected number of Ci, which makes C less likely

to be Ci and thus the relative probability to increase.

In general, therefore, a cluster is more likely to contain objects from the

same real cluster if it has more selected dimensions and each selected dimension

is required to have a larger R value, which justifies the use of the dynamic

threshold loosening mechanism.



Appendix B

List of Symbols

D The working dataset

N The size of (number of objects in) D

V The set of all dimensions of D

d The dimensionality of D

CI The I-th cluster

NI The size of (number of objects in) CI

VI The set of relevant dimensions of CI

dI The dimensionality (number of relevant dimensions) of CI

W ({CI}) The average within-cluster distance to centroid of the set

{CI} of clusters

WI The average within-cluster distance to centroid of cluster CI

k The number of clusters formed, or the target number of clus-

ters to form

vj The j-th dimension
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x An object

xj The projected value of object x on vj

xIj The average projected value of all objects in CI on vj

σ2
Ij The variance of projected values of all objects in CI along vj

W p({CI}) The projected version of W ({CI})

W p
I (VI) The projected version of WI with the relevant dimensions

specified by VI

ω The width parameter of the DOC, FastDOC and MineClus

algorithms

µ(NI , dI) The cluster evaluation function of the DOC, FastDOC and

MineClus algorithms

β A user parameter used in µ(NI , dI) to define the relative

importance of the size and dimensionality of a cluster

l A user parameter of the PROCLUS, ORCLUS and OPSM

algorithms

HI The mean squared residue score of CI

xiJ The average projected value of object xi on the relevant di-

mensions of CI

xIJ The average of the projected values of all objects in CI on

all relevant dimensions of CI

δ The quality threshold used in the Cheng and Church algo-

rithms and the pCluster model

s The cluster dimensionality parameter of the OPSM algo-

rithm
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G The pool of gene sets in the coupled two-way clustering ap-

proach

S The pool of sample sets in the coupled two-way clustering

approach

σ2
·j The variance of projected values of all objects in D along vj

RIj The relevance index of dimension vj in cluster CI

QI The quality score of cluster CI

R∗
Ij The mutual-disagreement-sensitive relevance index of dimen-

sion vj in cluster CI

RI1j|I2 The adjusted relevance index of vj in CI1 given that CI1 is

merging with CI2

MS(CI1 , CI2) The merge score between clusters CI1 and CI2

minIj The minimum projected value of the members of CI on vj

maxIj The maximum projected value of the members of CI on vj

dmin The dimensionality threshold of HARP

Rmin The relevance threshold of HARP

lr The average dimensionality of the real clusters in testing data

minj The minimum projected value of all objects in D on vj

maxj The maximum projected value of all objects in D on vj

e Artificial data error rate in synthetic data

o Artificial outlier rate in synthetic data

U r The partitioning of objects according to the real clusters

U c The partitioning of objects in a clustering result
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A1(CI) Average selected-to-all within-cluster distance to centroid ra-

tio of cluster CI

A2(CI) Average non-selected-to-all within-cluster distance to cen-

troid ratio of cluster CI

A3(CI) Average selected-to-all between-cluster distance ratio of clus-

ter CI
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