Whole-genome bisulfite sequencing of multiple individuals reveals
complementary roles of promoter and gene body methylation in
transcriptional regulation
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Abstract

Background: DNA methylation is an important type of epigenetic modification involved in gene
regulation. Although strong DNA methylation at promoters is widely recognized to be associated with
transcriptional repression, many aspects of DNA methylation remain not fully understood, including
the quantitative relationships between DNA methylation and expression levels, and the individual
roles of promoter and gene body methylation.

Results: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA
sequencing data from human samples and cell lines. We found that while promoter methylation
inversely correlates with gene expression as generally observed, the repressive effect is clear only on
genes with a very high DNA methylation level. By means of statistical modeling, we found that DNA
methylation is indicative of the expression class of a gene in general, but gene body methylation is a
better indicator than promoter methylation. These findings are general in that a model constructed
from a sample/cell line could accurately fit the unseen data from another. We further found that
promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify
low expression. Finally, we integrated histone modification data, and obtained increased modeling
power by combining histone marks and DNA methylation, showing that neither type of information
fully subsumes the other.

Conclusion: Our results suggest that DNA methylation outside promoters also plays critical roles
in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential
methylation should pay more attention to DNA methylation at gene bodies and other non-promoter
regions.
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Introduction

DNA methylation refers to the methylation of the carbon atom at position 5 of a cytosine (m5C), which
mostly happens within CpG, CpHpG and CpHpH nucleotide patterns in eukaryotes (Bird, 2002; Cokus
et al., 2008a; Lister et al., 2008, 2009). In differentiated cells of mammals, methylation appears predom-
inantly at CpG dinucleotides, with about 60% to 90% of all CpG sites methylated (Ehrlich et al., 1982;
Bird, 1986; Lister et al., 2009). DNA methylation is a stable epigenetic modification involved in many
cellular processes, including cellular differentiation, suppression of transposable elements, embryogenesis,
X-inactivation and genomic imprinting (Lister et al., 2009). DNA methylation around the 5’ terminus of
a gene is well-recognized to be associated with low gene expression, by actively repressing transcription or
marking already silenced genes (Miranda and Jones, 2007; Suzuki and Bird, 2008). Different models have
been proposed for the molecular mechanisms of DNA methylation in transcriptional repression, including
the blockage of transcription factor binding, and the recruitment of transcriptional repressors involved in
methylation-dependent chromatin remodeling and gene repression (Kass et al., 1977; Bird, 2002). The
important roles of DNA methylation are also evidenced by the association of aberrant DNA methylation
with various human diseases (Robertson, 2005; Portela and Esteller, 2010).

Previous findings obtained by high-throughput methods

To systematically study DNA methylation at the genomic scale, it is necessary to identify many, ideally
all, methylated sites in a genome. Various high-throughput methods have been invented for large-scale
detection of methylation events (Beck and Rakyan, 2008; Suzuki and Bird, 2008; Laird, 2010; Jones,
2012). These methods differ in the way genomic regions enriched for methylated or unmethylated DNA
are identified, and how genomic locations of these regions or their sequences are determined. The for-
mer includes the use of methylation-sensitive restriction enzyme digestion (Lippman et al., 2005; Khulan
et al., 2006), immunoprecipitation (Weber et al., 2005; Zhang et al., 2006; Weber et al., 2007), affinity
capture (Illingworth et al., 2008; Brinkman et al., 2010), and bisulfite conversion of unmethylated cy-
tosines to uracils (Cokus et al., 2008a; Lister et al., 2008, 2009; Li et al., 2010). The identities of the
collected regions are determined by microarray (Lippman et al., 2005; Weber et al., 2005; Khulan et al.,
2006; Zhang et al., 2006; Weber et al., 2007) or sequencing (Brinkman et al., 2010; Cokus et al., 2008a;
Tllingworth et al., 2008; Lister et al., 2008, 2009; Li et al., 2010). These methods have been extensively
compared in terms of their genomic coverage, resolution, cost, consistency and context-specific bias (Bock
et al., 2010; Harris et al., 2010).

By integrating gene expression data and global DNA methylation profiles from these high-throughput
methods, a general genome-wide negative correlation between promoter methylation and gene expression
was observed in multiple species (Bell et al., 2011; Pai et al., 2011). However, substantial overlap exists
in the distributions of promoter methylation level between genes with low versus high expression (Weber
et al., 2007; Bell et al., 2011; Pai et al., 2011). It was also suggested that for CpG island promoters,
DNA methylation is sufficient but not necessary for their inactivation, while for promoters with low CpG
content, hypermethylation does not preclude gene expression (Weber et al., 2007). The quantitative
relationship between promoter methylation and gene expression is thus more complicated than once
assumed (Jones, 2012) and the details have not been fully worked out.

The high-throughput methods have also provided evidence that there is extensive DNA methylation at
transcribable regions (Hellman and Chess, 2007). Gene body methylation was observed to be positively
correlated with gene expression in some cell types (Ball et al., 2009; Rauch et al., 2009), but not in
others (Lister et al., 2009). It was suggested that the positive correlation could either be due to de
novo methylation of internal CpG islands facilitated by transcription, in which case methylation was the
consequence; or due to the repression of anti-sense transcripts that would down-regulate expression of
the sense transcript, in which case methylation was the cause (Rauch et al., 2009). In contrast, it was
also previously proposed that intragenic DNA methylation could reduce the efficiency of transcription
elongation (Rountree and Selker, 1997; Lorincz et al., 2004), which would result in a negative correlation
between gene body methylation and expression. Furthermore, gene body methylation was reported to be
related to the regulation of alternative promoters (Maunakea et al., 2010), and may play a role in RNA



splicing (Choi et al., 2009). Whether these mechanisms co-exist and their relative importance in gene
regulation remain not fully explored.

Some of these functional roles of DNA methylation could depend on histone modifications (Cedar
and Bergman, 2009). Strong positive or negative correlations between DNA methylation and various
types of histone modifications have been observed at promoters and gene bodies by high-throughput
experiments (Ball et al., 2009; Maunakea et al., 2010; Wu et al., 2010; Hahn et al., 2011).

The need for quantitative studies

Most of the findings about promoter and gene body methylation described above were based on global
trends rather than individual genes. For instance, while promoter methylation has a general negative
correlation with gene expression, huge variance exists between both the promoter activities and resulting
expression levels of genes with similar methylation levels (Weber et al., 2007; Bell et al., 2011; Pai et al.,
2011). Until now it has been unclear whether it is possible to construct a quantitative model that tells
the expression level of an individual gene from its DNA methylation pattern alone or with additional
information about histone modifications around its genomic region. Such quantitative modeling would
be useful for understanding the combined effect of DNA methylation at different gene sub-elements, such
as promoters, exons and introns, on gene expression. It could further help elucidate the relative roles of
DNA methylation and other gene regulatory mechanisms in controlling gene expression, and estimate the
degree of cooperation and redundancy between them. It could also provide a principal way to identify
subsets of genes most affected by DNA methylation in particular cell types.

In recent studies, genomic regions hypo- or hyper-methylated in disease samples have been identified
by applying high-throughput methods (Irizarry et al., 2009; Akalin et al., 2012; Toperoff et al., 2012;
Ng et al., 2013). Having the ability to estimate the effect of DNA methylation on the expression of a
gene, quantitative modeling could help identify the most biologically relevant events in disease states,
from potentially long lists of differentially methylated regions, for downstream validation and functional
studies.

Here, we present our work in quantitatively modeling the relationships between DNA methylation and
gene expression using high-throughput sequencing data that cover the methylome and transcriptome of
three human samples and additional cell lines at single-base resolution. We show that DNA methylation
is highly anti-correlated with gene expression only when the methylation or expression level of a gene is
extremely high. We demonstrate that both promoter and gene body methylation are indicative of gene
expression level, but gene body methylation has a stronger effect overall. Combining both types of features
provides stronger modeling power than considering each type alone. Statistical models constructed from
such features can describe the general relationships between DNA methylation and gene expression across
different human samples and cell lines. We further demonstrate that DNA methylation could complement
histone modification signals in modeling gene expression, and that the quantification measure used for
calculating methylation levels has a profound impact on the modeling process and the corresponding
biological conclusions.

Results

Data and global patterns

We obtained whole-methylome bisulfite sequencing data at single-base resolution from peripheral blood
mononuclear cells (PBMCs) of three individuals in a family trio: Father (F), Mother (M) and Daughter
(D) from our previous study (Lee et al., 2013)*. Correspondingly, we extracted total RNA from the three
samples and performed whole-transcriptome shotgun sequencing. After data preprocessing, about 95%
of the resulting reads were uniquely mapped to the human reference genome (Table S1).

LAll raw sequencing reads have been deposited into NCBI Sequence Read Archive under entry SRP033491. All the
processed data files used in this study can be found at http://yiplab.cse.cuhk.edu.hk/means/



High correlations between methylation patterns in the three genomes

We first explored the global patterns of DNA methylation in the three individuals. Overall, both the
absolute number of methylated cytosines within CpG dinucleotides (mCG) in 10kb sliding windows
and the density of methylated cytosines with respect to the total number of CpG dinucleotides within
the window (mCG/CG) are highly correlated among the three individuals (Figure S1 for the whole
genome, Figure 1 for chromosome 1 as an example). The methylation density measure mCG/CG has
been commonly used in various methylome studies to quantify DNA methylation level (Ball et al., 2009;
Lister et al., 2009; Li et al., 2010). To check if our data were able to capture subtle DNA methylation
differences among the three individuals, we computed the correlation of every 15 adjacent windows
between each of the three pairs of individuals. To filter out local fluctuations due to intrinsic randomness
in sequencing experiments, we progressively increased the window size from 10kb to 250kb. When the
window size was 10kb, both mCG and mCG/CG identified a lot of regions with poor correlation between
two individuals (Figures S2-S7), signifying regions with potential differential methylation status. When
the window size was increased, the number of poorly correlated regions decreased for both methylation
measures, but the decrease was more rapid for mCG, indicating that mCG/CG is more sensitive to small
fluctuations, in particular in windows that contain a small number of CpG dinucleotides.

We collected the low-correlation regions that consistently showed up on the lists at different window
sizes, and used DAVID (Huang et al., 2008) to test for any functional enrichment of the genes inside
these regions. At a significance level of p=0.05 after correcting for multiple hypothesis testing using
the Benjamini-Hochberg procedure, some terms were significantly enriched in these genes, including O-
methyltransferase (p=0.0057), melatonin metabolic process (p=0.023) and hormone biosynthetic process
(p=0.047) (Table S2). Notably, melatonin secretion was known to be associated with type 2 diabetes
(T2D) (McMullan et al., 2013). As two of the three samples in our study were obtained from individuals
with T2D (Lee et al., 2013), our results indicated that our data were able to capture relevant information
related to the physiological status of the samples.

L-shaped patterns between methylated CpG count and gene expression

We then examined the relationship between DNA methylation and expression levels of genes in the three
individuals. We computed the average methylation level along each gene, considering both the gene body
and upstream regions, and plotted these methylation levels against the corresponding expression levels.
The resulting scatterplot based on the mCG quantification measure of DNA methylation (Figure 2a)
displays a very clear “L” shape, in which genes with very high expression levels all display very low
methylation levels, and genes with very high methylation levels all show very low expression levels. This
pattern suggests that for these extreme cases, there is a negative correlation between DNA methylation
and gene expression. However, the majority of genes have both low methylation and expression levels, and
the global correlations between DNA methylation and gene expression when all genes are considered were
not strong (Figure 2a, Pearson correlation=-0.0486, Spearman correlation=0.0709), despite significant p-
value of the Pearson correlation due to the large number of genes involved.

In contrast, the plot based on the normalized measure, mCG/CG, does not display an L-shaped
pattern, but rather shows a more global negative correlation with gene expression (Figure 2b, Pearson
correlation=-0.1293, Spearman correlation=-0.3705). When the methylation levels were plotted against
log expression values instead, the L-shaped patterns became less clear (Figure S12a,b), but DNA methy-
lation and gene expression were still observed to be weakly anti-correlated.

To get a better understanding on the differences that exist between different quantification measures
for DNA methylation, we also normalized mCG by the total length of the measured region (gene body
and upstream regions in this case), or by both the number of CpG sites and the region length. We denote
these measures as mCG/len and mCG/CG/len, respectively. The two corresponding scatterplots both
exhibit some weaker L-shaped patterns (Figure 2¢ and d).

These observed differences led us to check whether we could find positive correlations between gene
body methylation and expression levels as reported in some previous studies (Ball et al., 2009; Rauch et al.,
2009). To do that, instead of considering both upstream regions and gene bodies at the same time as in



Figure 2, we made separate scatterplots for upstream regions (Figure S8) and gene bodies (Figure S9). We
found a weak positive correlation between gene body methylation and gene expression for the mCG /len
measure based on Spearman correlation (Figure S9c). However, for the other quantification measures,
no significant global correlations were observed. For mCG, L-shaped patterns were observed for both
upstream regions and gene bodies (Figures S8a and S9a). We also checked exons (Figure S10) and introns
(Figure S11) separately, and found no significant differences between the global patterns of these plots
and those in which they were taken together as gene bodies. Again, plots based on log expression levels
exhibited similar correlation values but less apparent visual patterns (Figures S12-S16).

These initial results indicate that the relationship between DNA methylation and gene expression is
complex and non-linear. The expression levels of genes with very strong methylation levels appear much
more affected by DNA methylation than other genes. Whether DNA methylation at promoters and gene
bodies have opposite quantitative relationships with gene expression also warrants further investigation.

Quantitative modeling

To systematically study the quantitative relationships between DNA methylation and gene expression, we
performed statistical modeling by means of machine learning. The idea is to compute DNA methylation
levels at different sub-regions of a gene as its features, and construct a model that can tell the expression
level of any given gene based on its features. The accuracy of a model can be quantified by comparing
the model outputs and the actual expression levels of the genes measured by RNA-seq. We constructed
different models using different sub-regions and DNA methylation measures, to test which ones could
better explain the observed expression levels.

Specifically, for each annotated gene, we computed methylation levels in 16 different sub-regions
around its gene body and flanking regions (Figure 3). Within the gene body, we defined 6 sub-regions as
in a previous study (Li et al., 2010), namely first exon (FirstEx), first intron (FirstInt), internal exons
(IntnEx), internal introns (Intnlnt), last exon (LastEx), and last intron (LastInt). For the upstream
and downstream regions, we defined 5 non-overlapping 400bp sub-regions each (Up1-Up5 and Dw1-Dwb5,
respectively). We divided all genes into four equal-sized classes according to their expression levels,
namely Highest, Medium-high, Medium-low and Lowest, which correspond to genes with expression
within the first, second, third and fourth quartiles, respectively. In the first set of models, we combined
the data from the three individuals to maximize the amount of data for model construction, resulting in
53,535 (17,845 x 3) data records from 17,845 genes. We tested our models using a left-out procedure, in
which two-thirds of the genes from all three individuals were used in model training, and the accuracy
of a model was evaluated using the remaining one-third of the genes. We then repeated the procedure 5
times using different random training and testing sets and reported their average accuracy, to ensure the
reliability of the results.

DNA methylation is partially indicative of expression class

We first constructed models with all DNA methylation features from the 16 sub-regions of each gene,
using the mCG methylation measure. We tried 11 different model construction methods, and found that
the Random Forest method (Breiman, 2001) produced models with the highest cross-validation accuracy,
regardless of the exact way model accuracy was computed (Figure S17). We thus used the modeling
accuracy of this method as a proxy of how indicative of gene expression the methylation features are.
Based on the AUC measure (area under the receiver operator characteristic curve), the accuracy of the
one-class-against-all models for the four expression classes ranged from 0.63 to 0.82 (Figure S18), where a
random assignment of genes to expression classes would result in an AUC value of 0.5, indicating that the
methylation features were able to partially separate genes from different expression classes. Among the
four expression classes, the Lowest expression class had the highest accuracy, followed by the Highest,
Medium-high and Medium-low classes. These results are consistent with what we observed from the
scatterplots, that many genes with the lowest expression levels have very high methylation patterns,
which can separate them from genes with higher expression levels. The genes with the highest expression
levels are slightly more difficult to identify since their signature of low methylation is also shared by many



genes from other expression classes. Lacking clear signatures from DNA methylation levels alone, genes
in the two medium expression classes are most difficult to identify. The same trends were observed when
we repeated the analysis with all four DNA methylation quantification measures and a wide range of
expression class numbers (from 2 to 64, Figures S19-S22).

Gene body methylation is a stronger indicator of expression class than promoter methyla-
tion

We then compared the models constructed using features from either the upstream regions, gene bodies
or downstream regions alone (Figure 4). Methylation levels at gene bodies were more capable of telling
the expression class of a gene than upstream and downstream regions, for all four expression classes.
Combining features from all sub-regions gave the best modeling accuracy, which shows that the features
from the different sub-regions are not totally redundant, and may play different roles in gene regulation.
These observations stay true for all four methylation quantification measures (Figures 5 and S23). Com-
paring the modeling accuracy of the four methylation measures, none of them is clearly better than the
others, although on average mCG/CG/len had a slightly higher accuracy.

A potential confounding factor of the above analyses is that the upstream and downstream regions of
a transcript could overlap with the body of another transcript (Maunakea et al., 2010). For instance, for
a multi-exon gene, if it has a transcript that does not involve the first exon of the gene, DNA methylation
at the promoter of the transcript would be counted as gene body methylation of the gene, which may
confuse the statistical models. To study how much this would affect the results, we repeated the statistical
modeling using the subset of genes with only one annotated transcript isoform. Comparing the resulting
models based on different feature sets (Figure S24), gene bodies still showed stronger modeling power
than upstream and downstream regions, and the best accuracy was still obtained by combining features
from all three sub-regions.

It was previously shown that DNA methylation of the first exon is linked to transcriptional silenc-
ing (Brenet et al., 2011). We checked whether the higher modeling accuracy of gene body feature was
merely due to some strong features extended from the promoter to the first exon. Specifically, we con-
sidered two more sub-regions, namely gene bodies excluding the first exons (Genebody—FirstEx) and
upstream regions including the first exons (Upstream+FirstEx). We observed that including the first
exon in the upstream regions (Upstream—+FirstEx) or gene bodies (Genebody) indeed increased the mod-
eling accuracy as compared to having it excluded (Upstream and Genebody—FirstEx, respectively), thus
confirming the important role of this sub-region in signifying expression levels (Figure S25). On the
other hand, when we compared upstream and gene body regions, we found that the modeling accuracy of
Genebody-FirstEx was higher than Upstream, and that of Genebody was higher than Upstream+FirstEx
when all annotated genes were considered (Figure S25). The same trends were also observed when only
genes with one annotated transcript isoform were considered (Figure S24), except for a slightly higher
accuracy of Upstream than Genebody-FirstEx when the mCG/len methylation measure was used. Al-
together, our results show that in general, DNA methylation at gene bodies is a stronger indicator of the
expression class than DNA methylation at promoters, and it is neither due to overlapping definitions of
promoters and gene bodies for multi-transcript genes, nor signals coming from the first exon only.

We also compared the modeling accuracy of exons and introns. For all four quantification measures,
methylation levels at exons were consistently a better indicator of expression than methylation levels
at introns (Figure S25), but again the modeling accuracy was higher when both types of features were
considered than when either one was used alone.

To test if the above observations are sensitive to the way we define expression classes, we also used
a second way to divide genes into four expression classes covering equal range of log-expression values.
The results (Figure S26) show that all the main observations discussed above remain unaffected.

Quantitative relationships between promoter and gene body methylation

Since both promoter and gene body methylation are indicative of gene expression to a certain extent, we
next explored whether they carry redundant information. When plotting the DNA methylation levels at



these two regions for all genes, the distributions based on the four quantification measures were found to be
very different (Figure S27). An L-shaped pattern was observed for mCG (Figure S27a) and less obviously
for mCG/len (Figure S27c), but not for the other two measures (Figure S27b and d). Notably, when
mCG/CG was used for quantification, the genes were divided into two large clusters (Figure S27b). Both
clusters display very high level of gene body methylation, but one with very high and the other with very
low promoter methylation. We also created scatterplots for studying the relationships between the length,
the number of CpGs, and the number of methylated CpGs in each sub-region, for each of the 16 types
of sub-regions (Figures S28-S30). The scatterplots between number of CpGs and number of methylated
CpGs reveal some interesting patterns about the two clusters in the mCG/CG plot (Figure S29). For most
gene body sub-regions except FirstEx and to some degree LastEx, the genes form a straight line along
the diagonal line CG=mCG, showing that the different genes actually have different absolute number of
CpGs at their gene bodies, but most of their internal exons and internal introns are fully methylated. In
contrast, for the upstream and downstream sub-regions, as well as the first exon, the genes form a tilted
V-shaped pattern, with a group of genes lying close to the diagonal CG=mCG and another group lying
close to the vertical axis mCG=0, which correspond to the extreme cases with fully methylated and fully
unmethylated CpGs.

To gain more insights into the relationships between promoter and gene body methylation, we included
in our analysis the expression levels of the genes (Figure S31). The three-dimensional scatterplot based
on the mCG measure displays the sharpest pattern among the four plots (Figure S31a), which shows a
“triple-inverse” relationship between promoter methylation, gene body methylation and gene expression.
This triple-inverse relationship indicates that a gene can either have a high promoter mCG level, a high
gene body mCG level, or a high expression level, but not two or three of them simultaneously. This
relationship between the three quantities is consistent with the L-shaped patterns we previously observed
in the 2D plots (Figures S8a, S9a and S27a). These results suggest that in terms of the absolute number
of methylated CpG sites, either strong promoter methylation or strong gene body methylation alone is
sufficient to indicate low expression, and it is not required for a gene to redundantly have both indicators.

Potential role of gene body methylation for genes with CpG-poor promoters

It has been proposed that for CpG island promoters, DNA methylation is a sufficient but not necessary
condition for gene inactivation, while for CpG-poor promoters, DNA methylation does not preclude
expression (Weber et al., 2007). To check whether the same observations could be made in our data, we
plotted the expression level of different groups of genes according to their promoter CpG levels (Figure 6a
and b). Indeed, the expression levels of genes with a large number of CpG dinucleotides in their promoter
regions were more strongly affected by the DNA methylation in these regions. Specifically, for both mCG
and mCG/CG measures, promoter methylation was more anti-correlated with gene expression for genes
with highest or medium promoter CpG levels (first two bar sets of the figures) than those with lowest
promoter CpG levels (last bar sets of the figures). Genes with lowest promoter CpG levels were largely
insensitive to promoter methylation, and had low expression levels in general.

For this group of genes with CpG-poor promoters, can gene body methylation indicate their expression
levels? To answer this question, we again divided genes into three groups according to their promoter
CpG counts, but this time we studied the correlation between gene body methylation and expression
levels of each group instead (Figure 6¢ and d). For both mCG and mCG/CG, the genes with CpG-poor
promoters do exhibit some weak differential expression patterns as gene body methylation level varies,
but the correlation between gene body methylation and expression was positive for mCG and negative
for mCG/CG. These results suggest a potential role of gene body methylation in regulating genes with
CpG-poor promoters, although the exact mode of regulation is yet to be understood.

Generality of the quantitative models

All the results above were based on quantitative models both constructed and tested on the same individ-
uals (albeit on different subsets of genes), using data from one single cell type (PBMC). To test if these
models are generally useful for signifying expression classes, we collected single-base resolution bisulfite



sequencing and RNA-seq data for two cell lines, H1 human embryonic stem cells (hESC) and the human
lung fibroblast line IMR90, from the Roadmap Epigenomics Project (Bernstein et al., 2010) (Table S3).
We constructed models using DNA methylation and expression data from one individual/cell line, and
applied the models to predict the expression class of genes in another individual/cell line based on its
DNA methylation profile alone. To ensure the generality of the models, the genes used for training in the
first individual/cell line and the genes used for testing in the second individual/cell line were mutually
exclusive.

The results (Figure 7) show that, for all combinations of training and testing individuals/cell lines,
the prediction accuracy was much higher than random predictions (which would have an AUC value
of 0.5). Models constructed from any one of the three individuals were able to predict the expression
classes of genes in another individual with an average AUC of about 0.9, which is expected as these
samples all contained PBMC from individuals in the same family. More interestingly, the other data set
combinations also have prediction accuracy of about 0.75 on average, which demonstrate the generality of
the constructed models. These cross-sample results reconfirm our earlier findings that the more extreme
expression classes are better indicated by methylation patterns. Moreover, among the four methylation
quantification measures used, mCG, mCG/len and mCG/CG/len consistently provided better modeling
accuracy than mCG/CG (Figure 7), which indicates that the commonly-used quantification measure of
DNA methylation, mCG/CG, is not necessarily the best in signifying gene expression classes.

Quantitative relationship with histone modifications

Our quantitative models based on DNA methylation were able to achieve reasonable accuracy in identi-
fying the expression class of a gene, but they also show that DNA methylation alone is not informative
enough to signify precise expression levels. We have previously shown that histone modifications are
strong indicators of expression levels (Cheng et al., 2011, 2012). Therefore, we next explored the rela-
tionship between DNA methylation and histone modifications in terms of indicating gene expression, and
tested whether information on gene expression conveyed by DNA methylation is totally subsumed by that
of histone modifications. It was previously shown that promoter methylation was negatively correlated
with H3K4me3 (histone 3 lysine 4 trimethylation) in the human brain (Maunakea et al., 2010), and gene
body methylation was positively correlated with H3K36me3 and negatively correlated with H3K27me3
in a B-lymphocyte cell line (Ball et al., 2009). To study the quantitative relationships between DNA
methylation and histone modifications in the context of indicating expression levels, we compared sta-
tistical models that involve either only DNA methylation features, only histone modification features, or
both.

We collected ChIP-seq data for 26 types of histone modification from the H1 embryonic cell line from
the Roadmap Epigenomics Project (Table S3). As with DNA methylation, we computed the average
signal of each type of histone modification in the same 16 sub-regions for each gene. Although some
histone marks are known to be enriched in particular sub-regions, this knowledge is limited to some
well-studied types of histone modifications. We therefore considered all sub-regions and let the Random
Forest method identify the features most useful for indicating expression levels.

As expected, some of the models constructed from histone modification features alone had high
cross-validation accuracy (Figure 8). Consistent with previous findings, the two strongest feature sets
were H3K36me3 and H3K4me3, which mark actively transcribed regions and active promoters, respec-
tively (Zhou et al., 2011). Models based on DNA methylation features alone were not as accurate as
those constructed from these histone modification features well-known for their roles in marking gene
activities, but were more accurate than many other types of histone modification such as H3K9me3 and
H3K4mel (Figure 8).

DNA methylation and histone modifications contain non-redundant information about gene
expression

Interestingly, regardless of the type of histone modification and the DNA methylation measure used,
combining both types of features consistently increased the accuracy of the corresponding models involv-



ing only histone modification features or only DNA methylation features. Even for the strongest histone
modification feature set derived from H3K36me3, incorporating DNA methylation features still led to
an improvement of modeling accuracy by about 6%, from AUC value of 0.83 to 0.88 for mCG/CG/len,
which indicates that the two types of signals were not completely redundant in terms of signifying gene
expression.

To better understand how DNA methylation complements histone modification in indicating expres-
sion classes, we examined the DNA methylation and H3K36me3 signal levels of two types of genes, namely
(1) those with expression classes correctly identified by the model involving only mCG/CG/len features
but not by the model involving only H3K36me3 features, and (2) the vice versa, i.e., those with expression
classes correctly identified by the H3K36me3 model but not the mCG/CG/len model. The genes with
expression classes correctly identified by the mCG/CG/len model only displayed higher mCG/CG/len
levels (Figure 9a, blue lines and areas) and lower H3K36me3 levels (Figure 9b), indicating that in gen-
eral they were the less transcribed genes. Among the different sub-regions, as expected the ones best
separating the two groups of genes in terms of H3K36me3 signals were those within the gene bodies,
and to a lesser extent those at downstream regions (Figure 9b). Interestingly, in terms of mCG/CG /len
levels, the sub-regions that best separate the two groups of genes were the exonic regions, especially the
first exon (Figure 9a), indicating that methylation levels at exonic regions not only play crucial roles in
models involving DNA methylation features alone, but could also be important in complementing histone
modifications in indicating the expression class of a gene.

Similar to DNA methylation, histone modification features were most successful in identifying genes
with lowest expression levels (Figure S32). However, even the strongest histone modification features
were not significantly better than DNA methylation in identifying these genes. In contrast, some of them
were much better in identifying genes with medium expression levels, suggesting that DNA methylation
mainly indicates the coarse on/off status of a gene, while some histone marks provide more fine-grained
details about the precise expression levels.

We examined the relationships between DNA methylation and histone modifications in more detail
by plotting their values in different sub-regions of genes (Figures S33-S44). In particular, we reconfirmed
previous findings that DNA methylation and H3K4me3 negatively correlate at the upstream region (Fig-
ure 10). However, whether gene body methylation positively or negatively correlates with H3K36me3
depends on the DNA quantification measure (Figure 11), with the correlation being most positive for
mCG/len, and most negative for mCG/CG.

A small number of DNA methylation and histone modification features are sufficient to
maximally indicate gene expression

When we combined features derived from DNA methylation and all 26 types of histone modifications, the
resulting model had a higher accuracy than all the models involving single histone modification and/or
DNA methylation features (Figure 8). To test if it is possible to achieve the same accuracy with a smaller
number of feature sets, we applied a forward feature selection procedure. Specifically, we started with
either an empty set of features, or all DNA methylation features based on one quantification measure.
We then iteratively added the set of features for the type of histone modification that could maximize
the accuracy gain, until no more sets could lead to any further improvements. Depending on the DNA
methylation features included in the first step, maximal accuracy was achieved by 6-8 feature sets in total
(Figure S45).

Consistent with the single-feature-set results, H3K36me3 and H3K4me3 were always the features first
incorporated into the models. The features next incorporated include those that involve H3K79, and the
repressive mark H3K27me3. For the DNA methylation measures mCG, mCG/CG and mCG/CG/len,
including DNA methylation features resulted in final models with higher accuracy than the one involving
histone modification features alone, indicating that DNA methylation has non-negligible roles in these
models with maximal modeling accuracy.

Since the AUC values were increased most by H3K36me3 and H3K4me3, and these two marks are
well-known to be most indicative of expression levels, we believe similar results would be obtained if we
had applied other feature selection methods.



Discussion

Previous studies have examined high-level qualitative relationships between DNA methylation and gene
expression. In this work, we have demonstrated that DNA methylation status alone can indicate the
expression class of a gene with fairly high accuracy. The generality of our models has been confirmed by
their cross-sample/cell line modeling capability. Our quantitative models provide a means to analyze the
detailed quantitative relationships between DNA methylation and expression, with systematic assessments
of the level of expression variations explainable by DNA methylation.

We showed that two groups of genes have particularly clear methylation profiles in our data, namely
genes that lie on both ends of the spectrum — those with very high methylation and very low expres-
sion levels, and those with very high expression and very low methylation levels. If we apply a simple
classification of genes into those with high or low expression and DNA methylation levels, among the
four possible combinations, the one with both high expression and high DNA methylation is almost
devoid of genes when three out of the four DNA methylation quantification measures were used. The
resulting scatterplots exhibit clear L-shaped patterns (Figure 2), which correspond to an exclusive OR,
(XOR) relationship between DNA methylation and gene expression. Our results indicate that on the one
hand, strong DNA methylation is sufficient to indicate low expression of a gene, but on the other hand,
while low DNA methylation is permissive of transcription, the actual expression level of a gene is largely
determined by other factors.

We further demonstrated that one class of such factors is histone modification. Some types of histone
modification, including H3K4me3 and H3K36me3, are much stronger indicators of precise expression levels
of individual genes than DNA methylation. However, we found that incorporating DNA methylation
features consistently improved the modeling power of the models involving either of these histone marks
alone, or even the one involving all types of histone modification combined (Figure 8). Notably, we found
that DNA methylation levels at exonic regions helped determine the expression class of some genes in
our models when H3K36me3 features failed to do so.

A key finding of this study is that gene body methylation is a stronger indicator of expression class
than promoter methylation for genes in all expression classes. Our results are consistent with the strong
effects of gene body methylation on expression previously observed in plants (Hohn et al., 1996; Li et al.,
2008). We provided evidence that the stronger modeling power of gene body methylation could not
be explained by the effects of first exons alone or biases caused by the presence of multiple transcript
isoforms in a single gene, nor was it affected by the quantification measure of DNA methylation levels. We
also found that combining both promoter and gene body DNA methylation features resulted in a better
modeling accuracy of gene expression classes. The “triple-inverse” pattern observed between promoter
methylation, gene body methylation and gene expression (Figure S31a) suggests that promoter and gene
body methylation exert repressive effects on different sets of genes. Previous studies have proposed
that promoter methylation is linked to blockage of transcription factors, while gene body methylation is
related to the recruitment of transcriptional repressors and reduction of transcriptional elongation (Kass
et al., 1977; Bird, 2002; Lorincz et al., 2004). The potentially divergent roles of DNA methylation at
the two types of regions are consistent with the higher modeling accuracy achieved in our study when
both types of features were considered. Since the on/off role of promoter methylation appears to affect
a relatively small set of genes with extreme methylation levels, we speculate that the effect of gene body
methylation on reducing transcription efficiency may be a more general mechanism that affects a broader
group of genes, which provides a plausible explanation for the stronger modeling power of the gene body
methylation features in our current study.

We propose that the different functions of DNA methylation in transcriptional regulation are better
reflected by multiple quantification measures rather than one single measure. It is possible that the raw
number of methylated CpG sites, mCG, is a proxy of the total time of an elongating polymerase being
slowed down by gene body methylation. Another quantification measure, the number of methylated CpG
sites per unit length, mCG/len, may be more related to the average speed reduction of the elongating
polymerase. Finally, the commonly-used density measure mCG/CG represents a comparison between
methylated and unmethylated CpG sites in a given genomic region, which may reflect the “compet-
itiveness” of the region for events such as protein binding. In this study, we demonstrated that these
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quantification measures used to represent methylation levels at a given genomic region could exhibit dras-
tically different patterns when analyzed together with gene expression and histone modification signals.
However, all of them were able to model expression classes reasonably well and none of them was clearly
better than all the others. Further investigations are needed to study the detailed mechanistic meanings
of these different quantification measures.

Our results offer several possible explanations for the apparent discrepancies among previous studies
examining the relationships between gene body methylation and gene expression, that in some studies
they were observed to be positively correlated (Lorincz et al., 2004; Maunakea et al., 2010) and in others,
negatively correlated (Flanagan and Wild, 2007; Cokus et al., 2008b; Ball et al., 2009; Rauch et al., 2009).
We found that substantially different correlation values could be obtained by using different quantification
measures of DNA methylation, and different ways to compute the correlations. For example, whereas
rank-based Spearman correlation is more strongly affected by the bulk of genes with low methylation
and expression levels as they occupy a wide range of rank values, value-based Pearson correlation is more
influenced by genes with more extreme methylation and expression levels. Calculating correlations using
different subsets of genes, such as all genes versus only those with observable expression values, could
also lead to very different conclusions. The discrepancies in the previous studies could be due to these
and other subtle data processing and analysis details.

Further studies will be needed to elucidate how promoter and gene body methylation of different
transcripts of a gene are coordinated. Signals that cover a broad area, such as DNA methylation over
whole transcript bodies, have a high chance of interfering with other transcripts. The coordination would
be simplest if promoter and gene body methylation both take on a repressive role, and different transcript
isoforms of a gene co-express in a synchronized manner. In that case, DNA methylation would be mainly
responsible for marking genes with all transcripts repressed. The co-expression of transcript isoforms was
indeed observed in large-scale sequencing data from human cells (Djebali et al., 2012), although it is still
unclear whether the different isoforms expressed simultaneously in the same cell, or actually different
subsets of them were expressed in different sub-populations of the cells from which RNA was extracted
and sequenced. Alternatively, intragenic DNA methylation that intersects promoters of some transcripts
may be involved in regulating the use of alternative promoters (Maunakea et al., 2010). Whether other,
more complex types of coordination exist is yet to be studied.

Our study of the quantification measures at different genic sub-regions was facilitated by whole-genome
bisulfite sequencing data at single-base resolution. Some other experimental methods produce data at
a lower resolution (such as ChIP-based or affinity-capture-based methods), have incomplete genome
coverage, especially at transcribed regions (such as some array-based methods), or provide information
for only some types of DNA methylation quantification. Nevertheless, whole-genome bisulfite sequencing
has a relatively high cost, and it requires extensive computations in data processing. For practical
purposes, it would be crucial to choose a suitable experimental method based on the goal of the study.
For example, methylation profiles are obtained from case and control samples in some disease studies,
to identify differentially methylated regions with functional consequences. Our results offer new insights
into choosing the suitable experimental method by indicating that for the vast majority of genes with
moderate or low methylation levels, their expression levels are only weakly reflected by methylation
levels, but more strongly affected by other factors. Therefore, if one is to make hypotheses based on the
methylation data alone, it is more reasonable to consider only genes with extreme methylation levels.
These extreme cases can probably be identified using low-resolution data with partial genome coverage.
In contrast, if one wants to identify all differentially methylated genes for downstream experimental
testing of their functional effects, data with higher resolution can probably provide more details about
subtle differences that exist among the various samples. Additionally, it has recently been proposed that
methylation at distal enhancer sites may cause differential gene expression in disease samples (Aran et al.,
2013), the study of such phenomena would better be conducted using data with whole-genome coverage.
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Methods

Sample collection

We collected DNA methylation and gene expression data from a family trio from our previous study (Lee
et al., 2013). In the following, we briefly descirbe the sample collection, data generation and data
processing proceses.

Blood samples were obtained from a Chinese family trio consisting of a father, a mother and a
daughter, which we denote as F;, M and D, respectively. Peripheral blood mononuclear cells (PBMCs)
were isolated using Ficoll-Paque stepwise gradient centrifugation. The isolated PBMCs were divided for
DNA and RNA extraction. Total DNA was prepared using proteinase K digestion and phenol extraction.
Total RNA was extracted by Trizol following the manufacturer’s protocol. The quality of the RNA
samples was checked by Bioanalyzer before they were subjected to sequencing.

Methylome sequencing and data processing

Bisulfite sequencing and data processing were carried out as described previously (Li et al., 2010). DNA
was fragmented by sonication to 100 to 500bp in size, followed by end-blunting, dA addition at the 3’end
and ligation of adapters. The adapter sequence contained multiple methylcytosines to allow monitoring
of the efliciency of the bisulfite conversion. Unmethylated cytosines were converted to uracils by bisulfite
treatment using a modified protocol from Hayatsu (Hayatsu et al., 2008). DNA fragments in the size
range of 320 to 380 bp were gel-purified for sequencing. All procedures were performed according to
the manufacturer’s instructions. Converted DNA was subjected to 50bp paired-end sequencing using an
Tllumina Solexa GA sequencer. All the raw data were processed by the Illumina Pipeline v1.3.1.

The cleaned reads generated were aligned to the reference human genome hgl8 as follows. Since DNA
methylation is strand-specific, the two strands of the reference human genome were modified separately
in silico to convert all C’s to T’s, to generate a combined 6Gbp target genome for aligning reads after
bisulfite conversion. Correspondingly, the sequencing reads were also transformed using the following
criteria: (1) observed C’s in the forward reads were replaced by T’s; and (2) observed G’s in the reverse
reads were converted to A’s. The transformed reads were then aligned to the modified target genome using
the SOAP?2 aligner (Li et al., 2009). All the reads mapped to unique locations with minimum mismatches
and clear strand information were defined as uniquely matched reads, and were used to determine the
methylated Cytosines. According to the alignment results, the unconverted C’s and G’s from the original
read sequences before the transformation were used to identify the methylated Cytosines. Bases with
low quality scores were filtered to ensure accuracy of the results. The methylated Cytosines were defined
as those having a significant number of reads supporting its methylated status, with less than 1% FDR
according to a binomial distribution, as suggested previously (Li et al., 2010). All the Cytosine positions
were then lifted over to the reference human genome hgl9 by the LiftOver utility provided by the UCSC
Genome Browser (Kent et al., 2002) for downstream analyses.

Transcriptome sequencing and data processing

Total RNA extracted from each sample was enriched by oligo-dT to get the polyA+ fraction for sequenc-
ing. The polyA+ mRNAs were then fragmented and converted to cDNA by reverse transcription. After
ligation of the 5 and 3’ sequencing adaptors to the cDNA, DNA fragments were size-selected for 75bp
paired-end sequencing by Illumina Genome Analyzer IT using standard procedures. All the raw data were
processed by the Illumina Pipeline v1.3.1. All sequencing reads were trimmed dynamically according to
the algorithm provided by the -q option of the BWA tool (Li and Durbin, 2009). After trimming, read
pairs with both sides having at least 35bp were retained and mapped to the human reference genome
hgl9 using TopHat (Trapnell et al., 2009) (v.1.1.4) with the following parameters: microexon-search,
butterfly-search and -r 20. The expression value of a gene was computed by the RPKM measure (Mor-
tazavi et al., 2008), defined as the number of reads that cover it (in million reads) normalized by its
length (in kilobase) and the total number of reads in the data set.
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Definition of the four DNA methylation quantification measures

We defined four methylation measures based on methylated CpG sites. The first measure is the absolute
number of methylated CpG sites in a region, denoted as mCG. The second measure is the density of
methylated CpG sites relative to the total number of CpG sites in a region, denoted as mCG/CG. The
third measure is the density of methylated CpG sites relative to the length of a region, denoted as
mCG/len. The fourth measure is the number of methylated CpG sites normalized by both the total
number of CpG sites and the length of a region, denoted as mCG/CG/len.

Visualizing global DN A methylation patterns and computing local correlations
between two individuals

We constructed global DNA methylation profiles of the three individuals as follows. We first divided
up the human genome into 10kb windows. In each window, we computed the DNA methylation level
based on one of the four quantification measures. We then visualized the resulting global patterns using
IGV (Robinson et al., 2011) and Circos (Krzywinski et al., 2009). To compute local correlations of DNA
methylation profiles between two individuals, we divided up the genome into fixed-length windows (of
size 10kb, 50kb, 100kb or 250kb), and computed the DNA methylation level in each window. For every
15 consecutive windows, we then computed the Pearson correlation between two individuals (F vs. M,
F vs. D or M vs. D). The resulting distributions of correlation values were visualized using Box and
Whisker plots.

Enrichment analysis of regions with low methylation correlations

We collected regions with methylation correlations less than 0.5 between any two of the three individuals
based on the mCG quantification measure. We found that most of the regions obtained from the analysis
based on 100Kb window size consistently showed up on the list at different window sizes, and thus we
focused on this list of regions. We extracted the genes within these regions and submitted it to the
DAVID tool (Huang et al., 2008) for enrichment analysis with default parameters. The p-values reported
were corrected by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Definition of gene sub-regions

For analyses involving genes, we considered the level 1 and level 2 protein-coding genes annotated in
Gencode v7 (Harrow et al., 2012), based on composite gene models. We defined the body of a gene as
the first transcription start site of its annotated transcripts to the last transcription termination site of
its annotated transcripts. Within the gene body, we defined any region annotated as an exon in any of
the associated transcripts as an exon of the gene. We then defined sub-regions of a gene as shown in
Figure 3 and explained in the Results section. We discarded genes with less than 4 exonic regions after
merging overlapping exons from different transcripts, resulting in a set of 17,845 genes.

Definition of expression classes

By default we defined gene expression classes as follows. We first combined the genes from the three
individuals into a set of 53,535 (17,845x3) genes. Each of them was then assigned to one of four expression
classes, namely the “Highest”, “Medium-high”, “Medium-low” and “Lowest” classes, which contained
genes with expression levels within the first, second, third and fourth quartiles on the list of expression
values sorted in descending order. The Lowest expression class could contain genes with zero RPKM
values. In some analyses, we also defined other numbers (2, 8, 16, 32 or 64) of expression classes in
similar ways.

We also tested a second way of defining expression classes, in which classes A, B, C and D contained
genes with expression level within (log min +3x, log max], (log min +2z, log min +3z], (log min +z, log min +2z]
and [log min, log min +z|, respectively, where min and max are the minimum and maximum expression

3 . _ (log max — log min)
values among all genes, respectively, and x = 7 .
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Statistical modeling

We used 11 different methods to construct statistical models, including 5-Nearest Neighbors, 10-Nearest
Neighbors, 20-Nearest Neighbors, Naive Bayes, Bayesian Network, Decision Trees (C4.5), Random Forests,
Logistic Regression, Support Vector Machine (SVM) with linear kernel, SVM with second-degree polyno-
mial kernel, and SVM with Radial Basis Function (RBF) kernel. We used the implementation of all these
methods in Weka (Hall et al., 2009). We constructed statistical models using these methods with features
derived from DNA methylation and/or histone modification levels of the different genic sub-regions. We
first constructed models for the three individuals using their combined data. We randomly sampled 1/3
of the genes as a left-out testing set. The remaining 2/3 of the genes were used to perform model training.
The constructed model was then applied to the left-out set to compute the accuracy. For each setting,
we repeated the process five times to compute an average accuracy of the five models.

We also tested the generality of our models by constructing models using the DNA methylation and
gene expression data of a random set of 2/3 of the genes from one single individual/cell line for training,
and applying the model to predict the expression levels of the remaining 1/3 of the genes in another
individual/cell line based on the DNA methylation levels in this individual/cell line.

Collection and processing of cell line data

We downloaded data for human embryonic stem cells and human lung fibroblast line IMR90 produced
by Roadmap Epigenomics (Bernstein et al., 2010) from the Gene Expression Omnibus (GEO) (Edgar
et al., 2002) web site. The RPKM measure was used to compute the level of histone modification in each
given region. For data sets with replicates, we used the mean values of the replicates for computing the
histone modification signals.
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Figure 1: DNA methylation profiles of the three individuals based on 10kb sliding windows on chromosome
1. Abbreviations: CG: number of CpG dinucleotides in each window; mCG: number of methylated
cytosines within CpG dinucleotides in each window; (F): Father; (M): Mother; (D): Daughter.
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Figure 2: Relationships between the DNA methylation and expression levels of genes. Each point in
the figure corresponds to a gene. The methylation of a gene is the average level over its body and 2kb
upstream region. The four panels correspond to the results based on four different DNA methylation
measures. Color indicates number of points (in logy scale) within a cell when the occupied space is divided
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(FirstIn), last exon (LastEx), last intron (LastIn), internal exons (IntnEx) and internal introns (Intnln).
The 2kb upstream region is divided into 5 fixed-length sub-regions Up1-UpbH, each of 400bp. Downstream
sub-regions Dw1-Dwb5 are defined analogously. In some analyses these sub-regions are further grouped
into meta sub-regions, such as Upstream (Upl-Up5), Body (all the exonic and intronic sub-regions) and
Downstream (Dw1-Dwb5).

21



0.8 -
0.7 -
Region
. Downstream
§ Upstream
Gene body
0.6 -
| K
0'5_ | I I |
0.4 - 1 1 1 1 1

Highest Medium-high Medium-low Lowest Mean of All
Expression level

Figure 4: Accuracy of Random Forest expression models based on DNA methylation features quantified
by mCG from three individual sub-regions or their combination. The accuracy values of genes from the
four expression classes are shown in the first four bar groups, while the last bar group shows the average
accuracy of the four expression classes.
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distribution of expression levels is shown by a Box and Whisker plot.
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Figure 7: Generality of the quantitative models. Random Forest expression models were constructed
using methylation and expression data from one of the individuals or cell lines, indicated by the different
columns. The methylation level of a gene is defined as the average level over its upstream, transcribed
and downstream regions. These models were used to predict the expression levels of genes in another
individual/cell line, based on their measured DNA methylation levels of them in it. For each of these
model training/testing combinations, the prediction accuracy values of the genes in different expression
classes, and their overall average, are shown in different bar groups. Within each bar group, the accuracy
values based on the four DNA methylation measures are shown.
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Figure 8: Joint effects of DNA methylation and histone modifications on gene expression. The four
panels compare Random Forest expression models with only DNA methylation features (straight line with

triangle markers), only histone modification features (orange bars), or both (blue bars). The four panels
involve DNA methylation levels computed by different quantification measures. For DNA methylation
and any type of histone modifications, its signal level is computed as the average over the upstream,
transcribed and downstream regions of a gene. In each panel, the first 26 bar groups correspond to
models involving one of the 26 types of histone modification, while the last bar group corresponds to the

model involving all 26 types of histone modification.
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Figure 10: Relationships between the DNA methylation (y-axis) and H3K4me3 (x-axis) at the upstream
regions of genes, based on the four DNA methylation measures.
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Supplementary Information

Supplementary tables

Table S1: Summary statistics of the bisulfite sequencing and RNA sequencing data from the three samples
of the family trio.

Individual Father Mother Daughter
Bisulfite sequencing

Number of reads (million reads) 3,069 2,821 2,646
Number of bases (Gb) 152 140 141
Number of mapped bases (Gb) 105 104 108
Mapping ratio (%) 69.3 74.5 76.8
Average coverage 35x 35x 36x
RNA sequencing

Number of reads (million reads) 82.0 121.5 154.8
Number of bases (Gb) 5.3 8.3 104
Number of mapped bases (Gb) 78.9 118.1 150.1
Mapping ratio (%) 96.2 97.2 96.9

Table S2: Terms enriched in the genes within regions with low methylation correlation between the three
individuals based on the mCG quantification measure.

Category Term Benjamini-Hochberg-corrected p-value
INTERPRO IPR001077:0O-methyltransferase, family 2 0.0057
GOTERM_BP_FAT GO:0030186 melatonin metabolic process 0.023
GOTERM_BP_FAT  GO:0030187 melatonin biosynthetic process 0.023
GOTERM_MF_FAT GO:0017096 acetylserotonin O-methyltransferase activity 0.011
GOTERM_BP_FAT  GO:0046219 indolalkylamine biosynthetic process 0.019
GOTERM_BP_FAT  GO:0042435 indole derivative biosynthetic process 0.019
GOTERM_BP_FAT  G0:0042434 indole derivative metabolic process 0.036
GOTERM_BP_FAT GO:0006586 indolalkylamine metabolic process 0.036
GOTERM_BP_FAT  G0:0042430 indole and derivative metabolic process 0.036
GOTERM_MF_FAT GO:0008171 O-methyltransferase activity 0.026
GOTERM_BP_FAT  (G0:0042401 biogenic amine biosynthetic process 0.057
GOTERM_BP_FAT  GO:0042446 hormone biosynthetic process 0.047

S1



Table S3: List of DNA methylation (bisulfite sequencing), gene expression (RNA-seq) and histone mod-
ification (ChIP-seq) data sets from the H1 human embryonic stem cells (hESC) and IMR90 human lung
fibroblast line used in this study.

Cell Data type GEO ID Cell Data type GEO ID

hESC Bisulfite sequencing GSM429321 | hESC ~ ChIP-seq (H3K4mel)  GSM466739
hESC Bisulfite sequencing GSM429322 | hESC ~ ChIP-seq (H3K4mel)  GSM605312
hESC Bisulfite sequencing GSM429323 | hESC  ChIP-seq (H3K4me2)  GSM602260
hESC Bisulfite sequencing GSM432685 | hESC  ChIP-seq (H3K4me2)  GSM602261
hESC Bisulfite sequencing GSM432686 | hESC ~ ChIP-seq (H3K4me3)  GSM409308
hESC  ChIP-seq (H2AK5ac) GSM602257 | hESC ~ ChIP-seq (H3K4me3)  GSM469971
hESC ChIP-seq (H2AK5ac) GSM602258 | hESC ChIP-seq (H3K4me3) GSM605315
hESC ChIP-seq (H2BK120ac) GSM605295 | hESC  ChIP-seq (H3K56ac) GSM605317
hESC ChIP-seq (H2BK120ac) GSM789280 | hESC  ChIP-seq (H3K56ac) GSM667627
hESC ChIP-seq (H2BK120ac) GSM789281 | hESC ChIP-seq (H3K79mel) GSM605318
hESC ChIP-seq (H2BK12ac)  GSM605296 | hESC  ChIP-seq (H3K79mel) GSM605319
hESC ChIP-seq (H2BK12ac)  GSM605297 | hESC  ChIP-seq (H3K79mel) GSM605320
hESC ChIP-seq (H2BK15ac) GSM605298 | hESC ChIP-seq (H3K79me2) GSM605321
hESC ChIP-seq (H2BK15ac)  GSM605299 | hESC  ChIP-seq (H3K79me2) GSM605322
hESC ChIP-seq (H2BK20ac)  GSM605300 | hESC  ChIP-seq (H3K9ac) GSM434785
hESC ChIP-seq (H2BK20ac) GSM605301 | hESC ChIP-seq (H3K9ac) GSM605323
hESC ChIP-seq (H2BKbac) GSM605302 | hESC ~ ChIP-seq (H3K9me3) GSM605325
hESC ChIP-seq (H2BKbac) GSM605303 | hESC ~ ChIP-seq (H3K9me3)  GSM605327
hESC  ChIP-seq (H3K14ac) GSM667614 | hESC  ChlIP-seq (H3K9me3)  GSM605328
hESC ChIP-seq (H3K14ac) GSM667615 | hESC ~ ChIP-seq (H3K9me3) GSM818057
hESC ChIP-seq (H3K18ac) GSM602259 | hESC  ChIP-seq (H4K20mel) GSM605329
hESC ChIP-seq (H3K18ac)  GSM605304 | hESC  ChIP-seq (H4K20mel) GSM789284
hESC ChIP-seq (H3K23ac) GSM667617 | hESC ~ ChIP-seq (H4Kbac) GSM605330
hESC ChIP-seq (H3K23ac) GSM667618 | hESC ~ ChIP-seq (H4K5ac) GSM752990
hESC ChIP-seq (H3K23me2) GSM605305 | hESC  ChIP-seq (H4K8ac) GSM896166
hESC ChIP-seq (H3K23me2) GSM605306 | hESC  ChIP-seq (H4K8ac) GSM9I08966
hESC ChIP-seq (H3K27ac) GSM466732 | hESC  ChIP-seq (H4K91ac) GSM605332
hESC  ChIP-seq (H3K27ac) GSM663427 | hESC ~ ChIP-seq (H4K91ac) GSM752991
hESC ChIP-seq (H3K27me3) GSM434776 | hESC  RNA-Seq GSM915328
hESC ChIP-seq (H3K27me3) GSM466734 | hESC  RNA-Seq GSM915329
hESC ChIP-seq (H3K27me3)  GSM605308 | IMR90 Bisulfite sequencing GSM432687
hESC ChIP-seq (H3K36me3)  GSM409312 | IMR90 Bisulfite sequencing GSM432688
hESC ChIP-seq (H3K36me3) GSM466737 | IMR90 Bisulfite sequencing GSM432689
hESC ChIP-seq (H3K36me3) GSM605309 | IMR90 Bisulfite sequencing GSM432690
hESC ChIP-seq (H3K4ac) GSM605311 | IMR90  Bisulfite sequencing GSM432691
hESC  ChlIP-seq (H3K4ac) GSM667624 | IMR90  Bisulfite sequencing GSM432692
hESC ChIP-seq (H3K4mel) GSM409307 | IMR90 RNA-Seq GSM438363
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Supplementary figures
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Figure S1: Genome-wide DNA methylation profiles of the three individuals based on 10kb sliding windows.
The outermost track corresponds to the karyotype of the human genome. The remaining seven tracks
correspond to, from outer to inner, in each window (1) the number of CpG dinucleotides, the number of
methylated cytosines within CpG dinucleotides in (2) F, (3) M and (4) D, and the ratio of methylated
cytosines as compared to the total number of CpG dinucleotides in (5) F, (6) M and (7) D.
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Figure S2: Genome-wide correlation values of DNA methylation levels between Father and Mother ac-
cording to the mCG quantification measure. The correlation values are based on average methylation
levels in every 15 consecutive windows. The four panels correspond to the results for windows of sizes
10kb, 50kb, 100kb and 250kb, respectively.
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Figure S3: Genome-wide correlation values of DNA methylation levels between Father and Daughter
according to the mCG quantification measure. The correlation values are based on average methylation
levels in every 15 consecutive windows. The four panels correspond to the results for windows of sizes
10kb, 50kb, 100kb and 250kb, respectively.
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Figure S4: Genome-wide correlation values of DNA methylation levels between Mother and Daughter
according to the mCG quantification measure. The correlation values are based on average methylation
levels in every 15 consecutive windows. The four panels correspond to the results for windows of sizes
10kb, 50kb, 100kb and 250kb, respectively.
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Figure S5: Genome-wide correlation values of DNA methylation levels between Father and Mother ac-
cording to the mCG/CG quantification measure. The correlation values are based on average methylation
levels in every 15 consecutive windows. The four panels correspond to the results for windows of sizes

0.8

0.4

0.0

ﬁﬁﬁﬁﬁﬁﬁﬂﬂ:ﬁ DEED
L

I I T ! 1 1 | ! I I I ! 1 I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome(bin size:10kh)
! | l

I Il I

! i E i H H . H

I ] i : H l - [ ' . ' ! . 1

P poL : R B P : !

bt : : : .o : : : !

g i 5 i i i o . ’

T T T T T 1 — T T 1 T T T T T 1T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome(bin size:50kh)

T | ' I T | I l T
|| lIIII‘l!
S S T I T o
E " : i ' . H ] ; : b I ' g : :
O 1 E S i ‘ ‘
I R : :
Yo . i : !

k . H : t
1T T 1 T T T 1 — T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosomeibin size:100kb)
— p— — ._-—-_|.=.-¥- --— - T e —
TITI7T 77T 77T 77777777

2

#nl—

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome(bin size:250kb)

10kb, 50kb, 100kb and 250kb, respectively.

S7




. — =
- DEESEEEHEEEEEEWD E Dﬁ T'W
CD. _ '
=] - | ]
g a
2« | ;
8° : |
- E i =
= ! L H
= 1 1 ? T T —+ 1 1 ! 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome(bin size:10kh)
o
— |:|==|::|—_—|=|===l—_—.:=.—-—.l::l:l I__'_I I::l |____|
o : T I T TT T
= 4
gco H ; : I I
S ] ! i P ; | [
g« ! ! .o b0 ; '
s31 10 SR L
N i ! LI 5 i .o ' i
o : i
e T T T T I — T T T T T 1
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome(bin size:50kh)
o
CTTTTTTITTITT T T 17T
(=T ] 1 l l
= s H i E H ' 1 1 I ¢ :
oo | ] ] - 1 3
g o " |1 1 I i | . ‘ '
© H B ’ . i
= ¥ . " H H H
8° . T i ' ' H
Y - - i
o _ : :
e S N N B R e p— S R S R E— R A S N
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosomeibin size:100kb)
(=)
- - - LI A T -5 T
S0 L T o T At B
= : i i ) :
5© : +
=S ¥ . .
2.
87
O -
()
S |
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome(bin size:250kb)

Figure S6: Genome-wide correlation values of DNA methylation levels between Father and Daughter
according to the mCG/CG quantification measure. The correlation values are based on average methy-
lation levels in every 15 consecutive windows. The four panels correspond to the results for windows of
sizes 10kb, 50kb, 100kb and 250kb, respectively.
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Figure S7: Genome-wide correlation values of DNA methylation levels between Mother and Daughter
according to the mCG/CG quantification measure. The correlation values are based on average methy-
lation levels in every 15 consecutive windows. The four panels correspond to the results for windows of
sizes 10kb, 50kb, 100kb and 250kb, respectively.
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Figure S8: Relationships between the DNA methylation and expression levels of gene upstream regions.
Each point in the figure corresponds to a gene. The methylation of a gene is the average level over its
2kb upstream region. The two panels correspond to the results based on the mCG and mCG/CG DNA
methylation measures. Since the upstream regions were defined to have the same length for all genes, the
plots for mCG/len and mCG/CG/len would be identical to those for mCG and mCG/CG, respectively,
and are thus omitted. Color indicates number of points (in logy scale) within a cell when the occupied
space is divided into a 500x500 grid.
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Figure S9: Relationships between the DNA methylation and expression levels of gene bodies. Each point
in the figure corresponds to a gene. The methylation of a gene is the average level over its transcribed
region. The four panels correspond to the results based on four different DNA methylation measures.
Color indicates number of points (in logy scale) within a cell when the occupied space is divided into a

500x500 grid.
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Figure S10: Relationships between the DNA methylation and expression levels of gene exons. Each point
in the figure corresponds to a gene. The methylation of a gene is the average level over its exonic regions.
The four panels correspond to the results based on four different DNA methylation measures. Color
indicates number of points (in logs scale) within a cell when the occupied space is divided into a 500x500

grid.
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Figure S11: Relationships between the DNA methylation and expression levels of gene introns. Each
point in the figure corresponds to a gene. The methylation of a gene is the average level over its intronic
regions. The four panels correspond to the results based on four different DNA methylation measures.
Color indicates number of points (in logy scale) within a cell when the occupied space is divided into a

500x500 grid.
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Figure S12: Relationships between the DNA methylation and log expression levels of genes. Each point
in the figure corresponds to a gene. The methylation of a gene is the average level over its body and 2kb
upstream region. The four panels correspond to the results based on four different DNA methylation
measures. Color indicates number of points (in logy scale) within a cell when the occupied space is divided

into a 500x500 grid.
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Figure S13: Relationships between the DNA methylation and log expression levels of gene upstream
regions. Fach point in the figure corresponds to a gene. The methylation of a gene is the average level
over its 2kb upstream region. The two panels correspond to the results based on the mCG and mCG/CG
DNA methylation measures. Since the upstream regions were defined to have the same length for all
genes, the plots for mCG/len and mCG/CG/len would be identical to those for mCG and mCG/CG,
respectively, and are thus omitted. Color indicates number of points (in logs scale) within a cell when
the occupied space is divided into a 500x500 grid.
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Figure S14: Relationships between the DNA methylation and log expression levels of gene bodies. Each
point in the figure corresponds to a gene. The methylation of a gene is the average level over its transcribed
region. The four panels correspond to the results based on four different DNA methylation measures.
Color indicates number of points (in logy scale) within a cell when the occupied space is divided into a

500x500 grid.
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Figure S15: Relationships between the DNA methylation and log expression levels of gene exons. Each
point in the figure corresponds to a gene. The methylation of a gene is the average level over its exonic
regions. The four panels correspond to the results based on four different DNA methylation measures.
Color indicates number of points (in logy scale) within a cell when the occupied space is divided into a

500x500 grid.
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Figure S16: Relationships between the DNA methylation and log expression levels of gene introns. Each
point in the figure corresponds to a gene. The methylation of a gene is the average level over its intronic
regions. The four panels correspond to the results based on four different DNA methylation measures.
Color indicates number of points (in logy scale) within a cell when the occupied space is divided into a

500x500 grid.
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Figure S17: Average accuracy of the different model construction methods. The accuracy of a method
is defined as its average accuracy over the four gene expression classes. The four bar groups correspond
to four different ways to compute model accuracy. The different methods are ordered according to their
accuracy based on the AUC measure, so that the method receiving the lowest AUC value (5-Nearest
Neighbor) is ordered first in all four bar groups, followed by the method receiving the second lowest AUC

value (Decision Tree), and so on.
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Figure S18: Accuracy of the different model construction methods on genes from different expression
classes. The accuracy of a method is defined based on the AUC measure. The first four bar groups
correspond to the four gene expression classes, while the last one shows the average accuracy of them.
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Figure S19: Accuracy of Random Forest models with different number of expression classes, based on
DNA methylation features quantified by the mCG measure. Each curve corresponds to the results of
a fixed number of expression classes. In each curve, the different expression classes are represented by
different values along the x-axis, where the leftmost value corresponds to the class with lowest expression
and the rightmost value corresponds to the class with highest expression. The y-coordinate of each class
is the average modeling accuracy (AUC) based on a 10-fold cross validation procedure.
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Figure S20: Accuracy of Random Forest models with different number of expression classes, based on
DNA methylation features quantified by the mCG/CG measure. Each curve corresponds to the results
of a fixed number of expression classes. In each curve, the different expression classes are represented by
different values along the x-axis, where the leftmost value corresponds to the class with lowest expression
and the rightmost value corresponds to the class with highest expression. The y-coordinate of each class
is the average modeling accuracy (AUC) based on a 10-fold cross validation procedure.
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Figure S21: Accuracy of Random Forest models with different number of expression classes, based on
DNA methylation features quantified by the mCG/len measure. Each curve corresponds to the results
of a fixed number of expression classes. In each curve, the different expression classes are represented by
different values along the x-axis, where the leftmost value corresponds to the class with lowest expression
and the rightmost value corresponds to the class with highest expression. The y-coordinate of each class
is the average modeling accuracy (AUC) based on a 10-fold cross validation procedure.
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Figure S22: Accuracy of Random Forest expression models with different number of expression classes,
based on DNA methylation features quantified by the mCG/CG/len measure. Each curve corresponds
to the results of a fixed number of expression classes. In each curve, the different expression classes
are represented by different values along the x-axis, where the leftmost value corresponds to the class
with lowest expression and the rightmost value corresponds to the class with highest expression. The

y-coordinate of each class is the average modeling accuracy (AUC) based on a 10-fold cross validation
procedure.
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Figure S23: Accuracy of Random Forest expression models for different expression classes based on
different DNA methylation measures. The first four bar groups correspond to the results for the four
expression classes, while the last one shows the average accuracy of them. Within each bar group, the
four bars correspond to the models based on DNA methylation features derived according to different
quantification measures, ordered according to their average accuracy.
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Figure S24: Accuracy of Random Forest expression models for genes with only one annotated transcript
isoform. The different bar groups correspond to the models constructed according to DNA methylation
features computed by different quantification measures. Within each bar group the different bars compare
the accuracy of the models constructed from different feature sets. Body-FirstEx corresponds to the set
of features from transcribed sub-regions excluding the first exon. Upstream+FirstEx corresponds to the
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set of features from both the 2kb upstream region and the first exon.
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Figure 525: Accuracy of Random Forest expression models for all annotated genes when each expression
class has the same number of genes. The different bar groups correspond to the models constructed
according to DNA methylation features computed by different quantification measures. Within each
bar group the different bars compare the accuracy of the models constructed from different feature sets.
Body-FirstEx corresponds to the set of features from transcribed sub-regions excluding the first exon.
Upstream+FirstEx corresponds to the set of features from both the 2kb upstream region and the first

exon.
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Figure 526: Accuracy of Random Forest expression models for all annotated genes when each expression
class covers the same range of log-expression values. The different bar groups correspond to the mod-
els constructed according to DNA methylation features computed by different quantification measures.
Within each bar group the different bars compare the accuracy of the models constructed from different
feature sets. Body-FirstEx corresponds to the set of features from transcribed sub-regions excluding the
first exon. Upstream+FirstEx corresponds to the set of features from both the 2kb upstream region and
the first exon.
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Figure S27: Relationship between DN A methylation at the upstream and transcribed region of transcripts.
Fach point in the figures corresponds to a transcript. The four panels show the plots based on different
DNA methylation measures, namely mCG (A), mCG/CG (B), mCG/len (C) and mCG/CG/len (D).

Color indicates local point density.
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Figure S28: Scatterplots between number of methylated CpG sites (mCG, x-axis) and length of different
sub-regions (y-axis) of genes. Each panel corresponds to one of the 16 sub-regions defined for a gene. Each
point corresponds to one gene. For sub-regions of fixed lengths, including the upstream and downstream
ones, the y-coordinates of the points are all equal.
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Figure S29: Scatterplots between number of methylated CpG sites (mCG, x-axis) and the total number
of CpG sites (CG, x-axis) of genes. Each panel corresponds to one of the 16 sub-regions defined for a
gene. Fach point corresponds to one gene.
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Figure S30: Scatterplots between total number of CpG sites (CG, x-axis) and length of different sub-
regions (y-axis) of genes. Each panel corresponds to one of the 16 sub-regions defined for a gene. Each
point corresponds to one gene. For sub-regions of fixed lengths, including the upstream and downstream
ones, the y-coordinates of the points are all equal.
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Figure S31: Relationship between promoter methylation, gene body methylation, and gene expression.
Each point in the figures corresponds to a gene. The four panels show the plots based on different DNA
methylation measures, namely mCG (A), mCG/CG (B), mCG/len (C) and mCG/CG/len (D).
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Figure S32: Joint effects of DNA methylation and histone modifications on each gene expression class.
The four panels show the results based on the four DNA methylation measures. In each panel, there
are four sub-panels showing results that involve genes from different expression classes. They compare
the Random Forest expression models with only DNA methylation features (straight line with triangle
markers), only histone modification features (orange bars), or both (blue bars). For DNA methylation
and any type of histone modifications, its signal level is computed as the average over the upstream,
transcribed and downstream regions of a gene. In each sub-panel, the first 26 bar groups correspond to
models involving one of the 26 types of histone modification, while the last bar group corresponds to the
model involving all 26 types of histone modification.
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on data from the upstream regions and the mCG DNA methylation measure. Each panel corresponds to
one of the 26 types of histone modification.
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Figure S34: Relationships between the DNA meghglation (y-axis) and histone modification (x-axis),
based on data from the upstream regions and the mCG/CG DNA methylation measure. Each panel
corresponds to one of the 26 types of histone modification.
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Figure 535: Relationships between the DNA methylafion (y-axis) and histone modification (x-axis), based
on data from the upstream regions and the mCG /len DNA methylation measure. Each panel corresponds
to one of the 26 types of histone modification.
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Figure S36: Relationships between the DNA meghglation (y-axis) and histone modification (x-axis),
based on data from the upstream regions and the mCG/CG/len DNA methylation measure. Each panel
corresponds to one of the 26 types of histone modification.
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Figure S38: Relationships between the DNA meghylation (y-axis) and histone modification (x-axis),
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corresponds to one of the 26 types of histone modification.
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Figure S39: Relationships between the DNA meghylation (y-axis) and histone modification (x-axis),
based on data from the transcribed regions and the mCG /len DNA methylation measure. Each panel

corresponds to one of the 26 types of histone modification.
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Figure 540: Relationships between the DNA meghglation (y-axis) and histone modification (x-axis),
based on data from the transcribed regions and the mCG/CG/len DNA methylation measure. Each

panel corresponds to one of the 26 types of histone modification.
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Figure S42: Relationships between the DNA meghylation (y-axis) and histone modification (x-axis),
based on data from the downstream regions and the mCG/CG DNA methylation measure. Each panel
corresponds to one of the 26 types of histone modification.
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Figure S43: Relationships between the DNA meghylation (y-axis) and histone modification (x-axis),
based on data from the downstream regions and the mCG/len DNA methylation measure. Each panel
corresponds to one of the 26 types of histone modification.
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Figure S44: Relationships between the DNA meghxlation (y-axis) and histone modification (x-axis),
based on data from the downstream regions and the mCG/CG/len DNA methylation measure. Each
panel corresponds to one of the 26 types of histone modification.
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Figure S45: Feature selection for finding smallest sets of features with maximal modeling accuracy. Each
curve shows the change of accuracy of the models by adding the next best feature set computed from all
16 sub-regions of genes. In the first four curves, the first feature set is fixed at DNA methylation based
on one of the quantification measures. The fifth curve shows the results when DNA methylation features
are not included. In all cases, the remaining feature sets are derived from histone modifications, where
hist1 is the first type of histone modification that can maximize the accuracy gain, hist2 is the one that
can maximize the accuracy gain after the first one has been added, and so on.
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