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ABSTRACT
Motivation: Individual genetic variants explain only a small fraction
of heritability in some diseases. Some variants have weak marginal
effects on disease risk, but their joint effects are significantly stronger
when occurring together. Most studies on such epistatic interactions
have focused on methods for identifying the interactions and interpre-
ting individual cases, but few have explored their general functional
basis. This was due to the lack of a comprehensive list of epistatic
interactions and uncertainties in associating variants to genes.
Results: We conducted a large-scale survey of published research
articles to compile the first comprehensive list of epistatic interacti-
ons in human diseases with detailed annotations. We used various
methods to associate these variants to genes to ensure robustness.
We found that these genes are significantly more connected in protein
interaction networks, are more co-expressed, and participate more
often in the same pathways. We demonstrate using the list to discover
novel disease pathways.
Contact: kevinyip@cse.cuhk.edu.hk

1 INTRODUCTION
Genome-wide association studies (GWAS) have systematically
identified genetic variants within important susceptibility loci in
various diseases (Easton et al., 2007; Fellay et al., 2007; Frayling
et al., 2007; Plenge et al., 2007; Visscher et al., 2012; The Wellcome
Trust Case Control Consortium, 2007). However, for some complex
diseases, the identified variants account for only a small portion of
disease susceptibility, leading to the question of what causes this
“missing heritability” (Eichler et al., 2010; Fuchsberger et al., 2016;
Manolio et al., 2009). For example, only 20-25% of the estima-
ted heritability from pedigree studies of Crohn’s disease could be
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explained by the identified common variants from GWAS (Lan-
der, 2011). Several explanations for the missing heritability have
been proposed, including the insufficient sample size for detecting
common variants with small effects, the presence of rare variants
with large effects, and the inflated heritability estimation in pedigree
studies attributed to non-additive effects such as epistasis (Gibson,
2012).

In order to evaluate the extent of missing heritability due to
non-common variants, a linear-mixed-model-based approach cal-
led Genomic-Relatedness-based Restricted Maximum-Likelihood
(GREML) was proposed (Yang et al., 2010). Using this approach, in
many diseases and traits the proportion of heritability explained by
all genotyped SNPs was found to be much larger than the proportion
explained only by the identified common variants (Lee et al., 2011;
Yang et al., 2010; Visscher et al., 2012). For instance, GREML
estimated that the genotyped SNPs altogether could explain 34%
of the heritability for Crohn’s disease (Golan et al., 2014). Various
improved estimation methods were subsequently proposed (Bulik-
Sullivan et al., 2015; Golan et al., 2014; Speed et al., 2012,
2017). Results based on these methods also demonstrated increa-
sed explainable heritability by using all SNPs. On the other hand,
there is still a large gap between the pedigree-based heritability and
the SNP-based heritability. To further explore the heritability explai-
ned by rare variants with large effects, an improved method based
on GREML was proposed (Yang et al., 2015). This method can esti-
mate the heritability explained by imputed variants, which include a
large percentage of rare variants. Applying this method in the study
of genetic factors of height and BMI, the explainable heritability
was found to be substantially increased by the rare variants.

Another explanation for missing heritability that has attracted
much attention is the presence of epistatic genetic interactions (Zuk
et al., 2011), in which the joint effect of two or more genetic variants
on disease susceptibility is significantly stronger than the expected
total effect of the individual variants if they were independent (Cor-
dell, 2009). These interactions were not thoroughly studied in early
GWAS, which instead mainly focused on the effects of individual
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genetic variants. In order to identify epistatic interactions, the stati-
stical significance of many combinations of genetic variants needs
to be determined. This is both statistically and computationally
challenging, since it is common to investigate millions of genetic
variants in a single study, which lead to trillions of variant pairs, not
to mention higher-order groups of more than two variants. In the
past few years, many methodological advancements have been made
to enhance the ability of detecting these epistatic interactions (Steen,
2012), including the invention of statistical models (Purcell et al.,
2007; Zhang and Liu, 2007), pre-selection of variants with potential
interactions (Emily et al., 2009), pre-grouping of variants (Zhang
et al., 2014), sampling of variants (Prabhu and Pe’er, 2012), bet-
ter computational algorithms (Wan et al., 2010b), and the use of
computer hardware to accelerate the calculations (Hu et al., 2010;
Kam-Thong et al., 2011; Yung et al., 2011).

Using these methods, previous studies have identified various
epistatic interactions that are statistically significant in explai-
ning disease susceptibility. However, the extent to which mis-
sing heritability can be explained by epistatic interactions remains
unclear (Yang et al., 2017). Whether epistatic interactions represent
a general phenomenon in human with biological importance also
remain controversial (Aschard et al., 2012; Hemani et al., 2014a;
Wood et al., 2014; Hemani et al., 2014b).

Some methods have used existing biological knowledge in the
discovery of epistatic interactions. Most notably are methods that
use functional pathways and networks to pre-select SNPs that could
be interacting epistatically (Sun et al., 2014; Wei et al., 2014). For
example, a framework was proposed (Liu et al., 2012) to gene-
rate potential interacting SNP pairs based on functional data such
as KEGG (Kanehisa et al., 2017) and STRING (Szklarczyk et al.,
2015). The Biofilter (Bush et al., 2009; Pendergrass et al., 2013)
pipeline was proposed to integrate multiple pathway and inter-
action network databases to build SNP-SNP interaction models.
These knowledge-driven filtering methods assume that epistatic
SNP-SNP interactions are correlated with functional interactions
of the corresponding affected genes, yet none of these studies has
systematically proved the presence of such correlations.

The lack of systematic investigation of the functional basis of epi-
static interactions in human diseases was due to the absence of a
comprehensive list of such interactions from published studies. The
fact that a genetic variant does not always affect its closest gene also
adds uncertainty to gene-based functional analysis methods.

The functional basis of epistatic interactions has been much more
systematically studied in the baker’s yeast Saccharomyces cerevi-
siae (Dixon et al., 2009). There are high-throughput methods that
study the growth rate of yeast cells with a large number of double
knock-outs of two genes, as compared to the corresponding growth
rates of the two single knock-outs (Tong et al., 2004; Pan et al.,
2006; Decourty et al., 2008). The data produced have helped formu-
late two main theories underlying negative genetic interactions (i.e.,
double knock-outs with a more severe phenotype than the expec-
tation of the two single knock-outs), namely the between-pathway
and within-pathway theories (Kelley and Ideker, 2005; Boone et al.,
2007). In the between-pathway theory, there are two pathways that
perform similar or complementary functions. If genes (and conse-
quently their gene products) in only one pathway are defective, the
damage to the cell is tolerable since the other pathway is still intact.
On the other hand, if genes in both pathways are defective, the
resulting damage would be much more severe, leading to epistatic

interactions between genes from the two pathways. In the within-
pathway theory, mutations that affect a single gene in a pathway or
protein complex can be tolerated, but if multiple genes are affected,
the whole pathway/complex may break down, resulting in a much
more serious phenotype.

Here we test if the within-pathway theory can also be applied to
explain statistically significant epistatic interactions associated with
human diseases. We present a list of published epistatic interac-
tions between single nucleotide polymorphisms (SNPs) in various
diseases from an extensive literature survey. To our knowledge, this
is the first comprehensive list of SNP-SNP interactions in human
diseases. In order to study the functional basis of these interactions,
we associated the SNPs in these interactions with corresponding
genes they likely affect. We used a variety of association methods
to ensure robustness of our results. We also removed gene pairs
close to each other on the primary genomic sequence, in order to
eliminate potential effects caused by genetic linkage (Hemani et al.,
2014a; Wood et al., 2014; Hemani et al., 2014b). We then explo-
red various functional relationships between the two genes in each
resulting pair, including protein-protein interactions, co-expression,
and co-occurrence in annotated biological pathways. Furthermore,
we describe an algorithm for identifying additional genes that may
be involved in the disease pathways from the combined epista-
tic and functional interaction network. Finally, we discuss several
biologically interesting cases discovered by this algorithm that are
well-supported by the literature.

2 METHODS

2.1 Compilation of the list of epistatic interactions
We used PubMed to search for research articles that describe epistatic SNP-
SNP interactions as follows. We used “epistasis” and “SNP-SNP interaction”
as keywords for the search, restricting the results to ”human” for the species.
From the results, we selected around 1,000 papers for manual checking (Sup-
plementary File 4). Specifically, we first scanned the paper titles to identify
the ones that likely report SNP-SNP interactions, such as those containing
the keywords “epistasis”, “gene-gene interaction”, “SNP-SNP interaction”
or “association studies”. After this quick filtering, 310 papers remained. For
these potentially relevant papers, we then scanned the main text to look for
SNP-SNP interactions, based on various exclusion criteria such as contai-
ning only simulated data or non-human disease studies (Supplementary File
4). From the extracted SNP-SNP interaction pairs, we further filtered out
pairs within 1Mbp from each other, which is a stringent criterion for elimina-
ting possible effects of genetic linkage. For each resulting pair of SNP-SNP
interactions, we recorded the associated diseases/phenotypes, the computa-
tional methods used for identifying them, and measures of their statistical
significance (Supplementary File 1).

2.2 Associating the SNPs to potentially affected genes
Since most functional data are gene-centric, it is much more feasible to study
the functional basis of SNP-SNP interactions by associating each SNP with
the genes that it likely affects. Currently there is not a consensus as to the
best way to perform such associations, but if a SNP overlaps a gene or is
close to it, it is reasonable to assume that the gene could be affected by the
SNP (Petersen et al., 2013). We therefore associated a SNP to a gene by its
genomic proximity using several different methods previously considered in
the literature to ensure the robustness of our results. Specifically, we assigned
a SNP to 1) the closest gene, 2) all genes within 2kbp, 3) 10kbp or 4) 25kbp
from it, and 5) all genes within the same linkage disequilibrium (LD) block
as the SNP. The LD blocks were downloaded from DistiLD (Pallejà et al.,
2012), which were defined for the hg19 human genome. For the other four
methods, we performed the associations using both hg19 and hg38 human
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reference genomes to evaluate the influence of the choice of the reference.
As a result, we had 9 sets of SNP-to-gene associations. The genes considered
were taken from Gencode (Harrow et al., 2012) (v19 for hg19 and v21 for
hg38) protein-coding genes. For each of the above methods, if in a SNP-SNP
interaction at least one of the two SNPs could not be associated with a gene,
the pair was removed from our list. The final result is a list of gene pairs
which we will refer to as the list of gene-gene epistatic interactions for each
SNP-to-gene association method.

2.3 Collection of biological networks
To study the functional relationships between the genes on our epistatic
interaction lists, we collected three types of biological networks, namely
protein-protein interactions (PPI), co-expression, and annotated pathways.
We collected all human PPIs in the Human Protein Reference Database
(HPRD) (Prasad et al., 2009) and Reactome (Croft et al., 2014), and con-
sidered each PPI as an unweighted, undirected edge in the network. For
co-expression, we obtained the mutual ranks of co-expression values for
each gene pair from the COXPRESdb (Obayashi et al., 2013), and con-
sidered each pair as an undirected edge weighted by the mutual rank in
the co-expression network. Finally, we downloaded annotated pathways
included in Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;
Subramanian et al., 2005), including the Gene Ontology terms of mole-
cular functions and biological processes (The Gene Ontology Consortium,
2015), BioCarta gene sets (Nishimura, 2001), Kyoto Encyclopedia of Genes
and Genomes (KEGG) gene sets (Kanehisa et al., 2017) and canonical
pathways. Canonical pathways include the Sigma Aldrich pathways (Merck,
2017), Signaling Transduction KE pathways (Iyengar, 2003), SuperAr-
ray pathways (Burkhalter et al., 2011), Signaling Gateway pathways (Li
et al., 2003) and Pathway Interaction Database (Schaefer et al., 2009). Each
pathway contained a set of directed unweighted edges with their meanings
depending on the corresponding pathways.

For each network, we standardized the gene names based on the HGNC
database of human gene names (Gray et al., 2013).

2.4 Studying the functional relationships between the
genes in the gene-gene epistatic interactions

We used two different methods to study the functional relationships between
the genes in the gene-gene epistatic interactions, namely i) statistical testing,
and ii) network neighborhood search (Figure 1).

2.4.1 Statistical testing We performed four sets of statistical tests to
see whether the two genes in epistatic interaction pairs are, compared to
random gene pairs, significantly:

1. More often connected in the PPI network (PPI-connectedness test)

2. Closer to each other in the PPI network (PPI-distance test)

3. More co-expressed in the co-expression network (co-expression test)

4. More often in the same biological pathway (same-pathway test)

We performed these tests by comparing the gene pairs on the list of epi-
static interactions with 100,000 other random gene pairs (Figure 1a), and
repeated it 10 times to ensure robustness of the results. Since the gene pairs
on the list of epistatic interactions were formed by the corresponding asso-
ciated SNP pairs, a gene would be more likely to be on the list by chance if it
contains more SNPs. Correspondingly, in the random gene pairs, each gene
was sampled with a probability proportional to the number of SNPs associa-
ted to it by the association method considered. In addition, as with the gene
pairs on the epistatic interaction list, we also required each random gene pair
to be formed by a random SNP pair at least 100Mb apart.

For the PPI-connectedness test, we encoded each gene pair with value 1
if the two genes were connected in the PPI network, and with value 0 if
they were not connected. The number of gene pairs having these two values
for the epistatic interactions and for the random gene pairs thus formed a
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Fig. 1: Methods used for studying the functional relationships bet-
ween genes in the epistatic interactions. Abbreviations: Epi. -
epistatic interaction gene pair; Ran. - random gene pair

2x2 contingency table. We then used a one-tailed Fisher exact test to com-
pute the p-value that the gene pairs on the list of epistatic interactions were
significantly more connected than the random gene pairs.

For the PPI-distance test, we encoded each pair of genes with their
shortest-path distance in the network (for two genes are not connected in
the network, a maximum value larger than the longest path in the network
was given). This procedure produced two vectors of distance values, one for
the epistatic interactions, and one for the random gene pairs. We then used
a one-tailed Wilcoxon rank-sum test to compute the p-value that the gene
pairs on the list of epistatic interactions were significantly closer in the PPI
network than the random gene pairs.

For the co-expression test, we used a procedure similar to the one for
the PPI-distance test, to compute the p-value that the gene pairs on the list
of epistatic interactions had significantly higher mutual co-expression ranks
than the random gene pairs.

Finally, for the same-pathway test, we used a procedure similar to the one
for the PPI-connectedness test, to compute the p-value that the gene pairs on
the list of epistatic interactions were significantly more often to co-occur in
at least one annotated pathway than random gene pairs.

To ensure the generality of our findings, we further repeated each set of
tests two times, once with the genes in the random gene pairs sampled from
the whole set of genes, and once with these genes sampled from only genes
that have at least one interaction in the corresponding network.

We also used a permutation-based approach to performing these four tests.
The details are provided in the Supplementary Materials.

2.4.2 Network neighborhood search In the Results section, we will
show that most of the results of the above statistical tests were highly signi-
ficant, suggesting that the gene pairs on the list of epistatic interactions are
functionally related in the three types of biological networks. Since existing
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biological networks are incomplete and mostly static (i.e., not containing
context-specific information), we wondered whether integrating the informa-
tion about epistatic interactions and functional interactions would be useful
in identifying disease-related pathways.

To explore this possibility (Figure 1b), we collected GWAS data from the
Wellcome Trust Case-Control Consortium (WTCCC) study of five common
diseases/phenotypes (Crohn’s disease, hypertension, rheumatoid arthritis,
type 1 diabetes mellitus, and type 2 diabetes mellitus) with 14,000 cases
and 3,000 shared controls (The Wellcome Trust Case Control Consortium,
2007). We used BOOST (Wan et al., 2010a) to perform an all-against-all cal-
culation, to compute the p-value for each pair of genetic variants to have an
epistatic interaction associated with the disease/phenotype. Applying a loose
threshold (p<4.89E-6, corresponding to a chi-square value > 30) to this full
list, we obtained a set of loosely significant epistatic interactions. We asso-
ciated these SNPs with genes they likely affect in the same ways as described
above, leading to a network of genes with loosely epistatic interactions for
the disease phenotype. Since the SNP pairs only have weakly significant
p-values, only a fraction of them are expected to play crucial roles in the
diseases/phenotypes.

We next formed a combined functional network consisting of all the edges
in the PPI and co-expression (binarized based on Pearson correlation cutoff
of 0.5) networks, while the annotated pathways were excluded for validating
the results. Next, for each pair of genes on our list of epistatic interacti-
ons for these 5 diseases/phenotypes from the literature survey, we identified
all shortest paths between the two genes in the combined functional net-
work with the direct edge between the two genes excluded, and then retained
only genes on these shortest paths with a loosely epistatic interaction with
at least one other gene on these paths. As a result, for each initial gene pair
on our list of epistatic interactions, we obtained a cluster of genes that were
densely connected with each other in terms of epistatic interactions and func-
tional (PPI and co-expression) interactions. We expect the functional data to
help identify the subset of loosely epistatic interactions most relevant to the
diseases/phenotypes.

We then performed an enrichment analysis of each cluster to check whe-
ther the genes in the cluster were enriched in annotated biological pathways.
Specifically, for each cluster and each pathway, we formed a 2x2 contin-
gency table for the genes in the cluster or not, and in the pathway or not,
where the background set contains all genes contained in the PPI network,
co-expression network or GSEA pathways. Based on this contingency table,
we computed a corrected chi-square statistic (Huang et al., 2008) and the
corresponding p-value. Among the statistically significant cases, we only
considered the ones with a significant enrichment of cluster genes in the
pathway, but not the significantly depleted cases. These raw p-values were
then corrected by Bonferroni correction, based on the total number of GSEA
pathway terms (2,451) and the number of clusters identified based on the
respective SNP-gene association method with at least 3 genes.

2.5 Testing on an RNAi data set
To further evaluate the generality of the functional relationships between
genes with epistatic interactions, we considered an RNAi data set for study-
ing epistasis among cancer genes (Wang et al., 2014). The data set contained
847 gene pairs with significant epistatic interactions among 1508 pairs tested
with combinatorial RNAi screening (with successful experiments from an
original list of 66×29=1914 pairs). We used these 847 pairs as positive
and the 1508-847=661 pairs as negative to perform the four types of sta-
tistical tests to see if the positive pairs are significantly more related by the
functional relationships.

3 RESULTS
3.1 List of gene-gene epistatic interactions in human

diseases/phenotypes
Based on our literature survey, we identified 83 to 2,449 gene-gene
epistatic interactions in human diseases/phenotypes depending on

the way of associating SNPs to genes (Table 1, Supplementary File
1). Most of the interactions are originated from SNP-SNP interacti-
ons between SNPs in the dbSNP database (Sherry et al., 2011). The
remaining cases involve particular alleles/genotypes of the genes,
or only the interacting genes with no information of the genetic
variants. Most of the gene pairs involve genes from different chro-
mosomes (95-99%), while all the other pairs have the two genes at
least 1Mbp apart from each other.

Table 1. Number of gene-gene epistatic interactions in human diseases and
disease phenotypes based on our literature survey using different methods for
associating SNPs to genes. Abbreviations: diff. - different; chr. - chromosome;
CD - Crohn’s Disease; HT - Hypertension; RA - Rheumatoid Arthritis; T1DM
- Type 1 Diabetes Mellitus; T2DM - Type 2 Diabetes Mellitus

Reference SNP- Number of gene pairs on epistatic interaction list
genome gene Total Diff. Same CD HT RA T1DM T2DM

association chr. chr.,
>1Mbp

apart

hg19 LD 2,449 2,411 38 62 1 51 0 77
hg19 Closest 104 102 2 5 1 3 2 7
hg19 Within 2kbp 83 80 3 4 1 1 2 7
hg19 Within 10kbp 121 118 3 5 1 5 2 13
hg19 Within 25kbp 255 252 3 7 1 12 12 16
hg38 Closest 107 104 3 5 1 3 3 7
hg38 Within 2kbp 85 81 4 4 1 1 3 7
hg38 Within 10kbp 132 126 6 5 1 4 5 13
hg38 Within 25kbp 270 262 8 7 1 11 17 16

3.2 Genes with epistatic interactions in human
diseases/phenotypes are functionally related in
various ways

We then performed the four types of statistical tests on the gene
pairs with epistatic interactions. With the 9 SNP-gene association
methods, 2 ways to sample random gene pairs (considering all
genes or only genes with interactions in the functional network),
and 10 sets of random gene pairs, each test resulted in 180 p-values.
Based on the distributions of these p-values, we found that genes
with epistatic interactions were functionally related in various ways
(Figure 2).

We found that genes with epistatic interactions are significantly
more connected and closer in the PPI network (Figures 2a,b). For
the PPI connectedness tests, most p-values were smaller than 0.01
except when SNPs were associated with all genes within 2kb based
on hg19. This small distance threshold caused many SNPs to be not
associated to any genes and were thus excluded from the statistical
tests, leading to insignificant p-values. Interestingly, the p-values
were generally more significant with the hg38 reference than with
hg19, suggesting that updates to the reference genome also impro-
ved this functional analysis. For the PPI distance tests, all p-values
were highly significant regardless of the setting, demonstrating the
reliability of the results.

For the co-expression tests (Figure 2c), the p-values were less
than 0.01 in over 90% of the cases. We observed an issue with
the LD block-based SNP-gene association, that in one single LD
block there could be many genes. In one extreme case, there was a
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Fig. 2: Box plots of the p-values obtained from (a) the PPI connectedness tests, (b) PPI distance tests, (c) co-expression tests, and (d)
same-pathway tests.

large LD block over 7Mb in size on chromosome 6 containing 650
genes. An epistatic SNP-SNP interaction involving a SNP in this
LD block led to a large number of corresponding gene-gene pairs,
many of which are not expected to have real epistatic interactions.
Other than this setting, the p-values were in general significant in all
other settings.

For the same-pathway tests (Figure 2d), again most of the p-
values were highly significant, with only some insignificant p-values
when SNPs were associated with nearby genes based on the old
hg19 reference.

To further ensure the robustness of our results, we also used
a permutation-based approach to perform the above four types of
statistical tests (Supplementary methods). The results (Figure S1)
confirmed statistical significance of the PPI connectedness, co-
expression and pathway co-occurrence of the genes with epistatic
interactions. This conclusion was generally robust with largely sta-
ble results across different SNP-gene association methods and the
way of sampling random gene pairs. On the other hand, the PPI
distances of gene pairs with epistatic interactions were only signifi-
cantly smaller than background gene pairs in some settings but not
in some others.

We also performed these four tests for the cancer genes with
epistatic interactions, using the remaining gene pairs among these
genes tested in the combinatorial RNAi experiments as the nega-
tive set. The results showed that the gene pairs having epistatic
interactions were significantly more connected and closer in the PPI

network, and more often co-occurring in the same pathways, with
p-values of 1.2E-8, 5.2E-8 and 2.8E-7, respectively. On the other
hand, the epistatically interacting gene pairs were only marginally
more co-expressed than the negative pairs, with a p-value of 0.21.

Taking all the results together, genes with epistatic interacti-
ons are generally related in terms of protein-protein interactions,
biological pathways and gene expression, although the level of
significance varies among data sets, statistical testing methods and
testing configurations.

3.3 Identifying disease-related pathways by
neighborhood searching in the combined
epistatic-functional network

Next we applied the neighborhood searching method to identify
potential disease-related pathways from the combined epistatic-
functional network. The full list of results is provided in Supplemen-
tary File 2. For each cluster, we performed an enrichment analysis
to check if the genes in the clusters were enriched in certain bio-
logical pathways. Interestingly, although the information of these
pathways was not used in the neighborhood search, many clusters
exhibited significant enrichment of the pathways (Supplementary
File 3), confirming that the neighborhood searching method was
able to identify biological pathways based on the epistatic and func-
tional interactions. Although this result is not surprising since we
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have used both an epistatic interaction reported to be strongly rela-
ted to the disease as well as a set of loosely epistatic interactions
as input, the strong relationship between the identified gene clu-
sters and the diseases suggest that the loosely epistatic interactions
included in the cluster are the ones more relevant to the diseases.
Furthermore, we found some terms that were enriched only when
we restricted the genes to those having loosely epistatic interactions
with each other. For example, the cluster of genes identified from the
JAK2-STAT3 pair (more details below) was enriched in the KEGG
pathway “hsa04920:Adipocytokine signaling pathway” only when
this restriction was applied, showing that the loosely epistatic inter-
actions contain some supplementary information not fully contained
in the functional interactions.

Here we show two interesting gene clusters identified that have
strong supports from the literature (Figure 3). A third cluster is
discussed in the Supplementary Materials due to space limit.
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Fig. 3: Results of neighborhood searching from the combined
epistatic-functional network, based on the epistatic interactions (a)
between HLA-C and PSMB8/PSMB9/TAP1 in type 1 diabetes mel-
litus, with SNPs associated with genes within 10kb using hg19
reference, and (b) between JAK2 and STAT3 in Crohn’s disease,
with SNPs associated with genes within the same LD block. Double
black lines indicate literature-reported epistatic interactions, black
dotted lines indicate WTCCC-BOOST loosely epistatic interactions,
red lines indicate PPIs, and green lines indicate co-expression.

Figure 3a shows a cluster identified from type 1 diabetes mel-
litus (T1DM), an autoimmune disease marked by the destruction
of insulin-producing β-cells in the pancreatic islets. This exam-
ple involves the epistatic interactions between HLA-C (due to the
SNPs rs2524089 and rs2524095) and PSMB8 (previously called
LMP7), PSMB9 (previously called LMP2) and TAP1 (due to the
SNPs rs9276815, rs9276825 and rs9276832) (Wan et al., 2010a).
These genes are linked to each other and to the other genes in the
cluster with loosely epistatic interactions, PPI and co-expression.
Most of these genes have been individually reported to be associated
with T1DM risk (Sia and Weinem, 2005; Noble et al., 2010). The
genes in this cluster are enriched in many pathways, such as antigen
processing and presentation, interferon signaling and endocytosis,
all with Bonferroni corrected p-values <1.8E-10.

The high density of epistatic and functional interactions between
these genes suggests that they belong to a pathway highly relevant
to T1DM. Indeed, these genes encode proteins that are part of the

MHC-I antigen processing and presentation pathway, a process cri-
tical for the activation of CD8 T cell-mediated adaptive immune
responses. Autoreactive CD8 T cells are key players in the killing
of pancreatic β-cells, resulting in autoimmune diabetes. Among the
genes we identified, HLA-A, -B, -C, -E, -F and -G are gene paralo-
gues encoding for the MHC-I heavy chain, which forms part of the
antigen presentation complex displayed on the surface of most cells.
MHC-I molecules bind peptide antigens generated by protein degra-
dation in the proteasome. The β-subunits of the immunoproteasome
are encoded by two genes in the cluster, PSMB8 and PSMB9.
Peptide antigens are transported from the cytosol to ER by the trans-
porter associated with antigen processing 1 (TAP1) and 2 (TAP2),
which form part of the MHC-I peptide-loading complex. Thus, each
of the functions described above (proteasomal activity, antigen pro-
cessing and antigen presentation) is aided by the expression of two
or more genes. If one of the genes has a mutation, another gene with
a similar function may compensate for the mutated gene in order to
maintain normal functions, as has been described in genetic knock-
out mice lacking PSMB8 alone, PSMB9 alone, or both (Kincaid
et al., 2012). Therefore, having one gene mutated may have a mini-
mal effect on the overall MHC-I antigen presentation pathway, but
if multiple functions are altered by genetic mutations, the net effect
is expected to be more severe across the whole pathway, which may
explain the epistatic interactions between HLA-C and TAP1.

Another gene in the cluster, BTN3A3, also called CD277 is a
member of the butyrophilin (BTN) family. The functions of pro-
teins encoded by the BTN gene cluster are not well understood
although polymorphisms in the BTN-gene cluster have been repor-
ted to associate with susceptibility to T1DM (Viken et al., 2009).
BTN3A3 has a closely related isoform, BTN3A1, which is known
to bind and present pyrophosphate antigens to γδ T cells (Vavas-
sori et al., 2013), suggesting that BTN3A proteins are functionally
important in antigen presentation. Based on our results, it will be
interesting to investigate the link between BTN3A3 and the MHC-I
antigen presentation pathway in the development of T1DM. Thus,
using a combined epistatic functional network approach, our analy-
ses provide evidence supporting the key role of the MHC-I antigen
processing and presentation pathway in conferring susceptibility to
T1DM (Sia and Weinem, 2005).

Figure 3b shows a cluster identified from an epistatic inter-
action in Crohn’s disease (CD) between JAK2 (due to the SNP
rs10758669) and STAT3 (due to the SNP rs744166) (Polgar et al.,
2012). CD is a sub-form of inflammatory bowel diseases (IBD)
that result in chronic inflammation of the gastrointestinal tract. The
cluster involves 11 other genes that form loosely epistatic interac-
tions and protein-protein interactions with JAK2 and STAT3. As
expected, many of the genes in this cluster are in the JAK-STAT
signaling pathway (Bonferroni corrected p-value < 1.7E-9). STAT3
belongs to the STAT family of transcription factors activated by
engagement of growth factors, interferons or cytokines on cell sur-
face receptors. Receptor engagement activates the JAK family of
receptor-associated tyrosine kinases, including JAK2, leading to the
recruitment, activation and translocation of STAT3 to the nucleus to
regulate target gene transcription.

The JAK-STAT pathway is essential for the differentiation of T
helper 17 (Th17) cells and the suppressive functions of regulatory T
cells, which are key players in the pathogenesis of CD (Chaudhry
et al., 2009; Patel and Kuchroo, 2015). Many genes in this clu-
ster are involved in receptor-mediated activation of the JAK/STAT
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pathway. For example, CXCR4 is a chemokine receptor found on
both T cells and intestinal epithelial cells. CXCR4 binds to CXCL12
and signals the activation of JAK2 and STAT3 (Ahr et al., 2005).
CXCR4 is more highly expressed in patients with IBD (Werner
et al., 2011), suggesting its involvement in the pathogenesis and pro-
gression of the disease (Mrowicki et al., 2014). Another gene in the
cluster, PTPN11 encodes for the protein tyrosine phosphatase SHP2,
which mediates tyrosine dephosphorylation of JAK2 to control the
activity of the JAK/STAT pathway (Xu and Qu, 2008). Genetic
mutations in PTPN11 are associated with increased susceptibility
to IBD in animal experiments (Coulombe et al., 2013) and human
studies (Marcil et al., 2013; The Wellcome Trust Case Control
Consortium, 2007).

Other genes in the cluster encode for the epidermal growth
factor receptor (EGFR) receptor, insulin-like growth factor I recep-
tor (IGF-IR) and growth hormone receptor (GHR), which have
been shown to trigger JAK/STAT activation upon receptor engage-
ment (Sugimoto, 2008; Wieduwilt and Moasser, 2008; Zong et al.,
2000). These growth factor receptors and their ligands are being
investigated as potential therapeutic targets for IBD because of their
roles in mediating signals involving mucosal repair and intestinal
inflammation (Barahona-Garrido et al., 2009). Taken together, we
identified a pathway involved in the activation of the JAK/STAT
signaling, which helps explain the epistatic interaction between
JAK2 and STAT3 in CD.

4 DISCUSSION
In this paper, we have demonstrated that epistatic interactions in
human diseases can be studied using biological networks. By asso-
ciating the SNP-SNP epistatic interactions to corresponding genes,
we have shown that these genes are significantly more connected
to each other in the protein-protein interaction network, more co-
expressed, and more often appear in the same annotated pathways.
These genes are also significantly closer to each other in the protein-
protein interaction network in some settings, although the results
are less significant in other settings. Based on these initial findings,
we have further demonstrated that the neighborhoods around these
genes in the combined epistatic-functional network can be used to
identify disease pathways.

The list of epistatic interactions we compiled from an extensive
review of research articles serves as a resource for studying epistatic
interactions in human diseases. We have overcome the issue of asso-
ciating SNPs with genes by using a variety of association methods
and showing that the results are largely immune to the choice of
method. We provide all these association results for anyone intere-
sted in studying epistatic interactions to choose the most suitable set
based on the research problem.

Our current list of epistatic interactions includes SNP pairs iden-
tified by a variety of methods. Since the list is not very long,
considering potential issues with statistical power we did not sepa-
rately analyze the subsets produced by different methods. These
method details are provided in Supplementary File 4, which can
be used for extracting any subset of particular interests in future
studies.

Our list of epistatic SNP-SNP interactions will need to be upda-
ted as more cases are published. Our literature survey procedures,

especially the paper exclusion criteria, serve as guidelines for these
future updates.

ACKNOWLEDGEMENT
We thank Yingying Wei for helpful discussions.

Funding: NLST, WY and KYY are partially supported by the
HKRGC Theme-based Research Scheme T12-402/13N.

REFERENCES
Ahr, B. et al (2005). Identification of the cytoplasmic domains of CXCR4 involved in

jak2 and STAT3 phosphorylation. Journal of Biological Chemistry, 280, 6692–6700.
Aschard, H. et al (2012). Inclusion of gene-gene and gene-environment interactions

unlikely to dramatically improve risk prediction for complex diseases. The American
Journal of Human Genetics, 90, 962–972.

Barahona-Garrido, J. et al (2009). Growth factors as treatment for inflammatory bowel
disease: A concise review of the evidence toward their potential clinical utility. The
Saudi Journal of Gastroenterology, 15, 208–212.

Boone, C., Bussey, H. and Andrews, B.J. (2007). Exploring genetic interactions and
networks with yeast. Nature Reviews Genetics, 8(6), 437–449.

Bulik-Sullivan, B.K. et al (2015). LD score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nature Genetics, 47, 291–295.

Burkhalter, R.J. et al (2011). Integrin regulation of β-catenin signaling in ovarian
carcinoma. Journal of Biological Chemistry, 286(26), 23467–23475.

Bush, W.S., Dudek, S.M. and Ritchie, M.D. (2009). Biofilter: A knowledge-integration
system for the multi-locus analysis of genome-wide association studies. In Pacific
Symposium of Biocomputing, pages 368–379.

Chaudhry, A. et al (2009). CD4+ regulatory T cells control TH17 responses in a stat3-
dependent manner. Science, 326, 986–991.

Cordell, H.J. (2009). Detecting gene-gene interactions that underlie human diseases.
Nature Review Genetics, 10(6), 392–404.

Coulombe, G. et al (2013). Epithelial tyrosine phosphatase SHP-2 protects against
intestinal inflammation in mice. Molecular and Cellular Biology, 33(11), 2275–
2284.

Croft, D. et al (2014). The reactome pathway knowledgebase. Nucleic Acids Research,
42, D472–D477.

Decourty, L. et al (2008). Linking functionally related genes by sensitive and quanti-
tative characterization of genetic interaction profiles. Proceedings of the National
Academy of Sciences of the United States of America, 105(15), 5821–5826.

Dixon, S.J. et al (2009). Systematic mapping of genetic interaction networks. Annual
Review of Genetics, 43, 601–625.

Easton, D.F. et al (2007). Genome-wide association study identifies novel breast cancer
susceptibility loci. Nature, 447(7148), 1087–1093.

Eichler, E.E. et al (2010). Missing heritability and strategies for finding the underlying
causes of complex disease. Nature Reviews Genetics, 11(6), 446–450.

Emily, M. et al (2009). Using biological networks to search for interacting loci in
genome-wide association studies. European Journal of Human Genetics, 17(10),
1231–1240.

Fellay, J. et al (2007). A whole-genome association study of major determinants for
host control of HIV-1. Science, 317(5840), 944–947.

Frayling, T.M. et al (2007). A common variant in the FTO gene is associated with body
mass index and predisposes to childhood and adult obesity. Science, 316(5826),
889–894.

Fuchsberger, C. et al (2016). The genetic architecture of type 2 diabetes. Nature,
536(7614), 41–47.

Gibson, G. (2012). Rare and common variants: Twenty arguments. Nature Reviews
Genetics, 13, 135–145.

Golan, D., Lander, E.S. and Rosset, S. (2014). Measuring missing heritability: Infer-
ring the contribution of common variants. Proceedings of the National Academy of
Sciences of the United States of America, 111(49), E5272–E5281.

Gray, K.A. et al (2013). Genenames.org: The HGNC resources in 2013. Nucleic Acids
Research, 41, D545–D552.

Harrow, J. et al (2012). GENCODE: The reference human genome annotation for the
ENCODE project. Genome Research, 22, 1760–1774.

Hemani, G. et al (2014a). Detection and replication of epistasis influencing transcrip-
tion in humans. Nature, 508(7495), 249–253.

Hemani, G. et al (2014b). Hemani et al. reply. Nature, 514(7520), E5–E6.

7



Yip and Chan et al.

Hu, X. et al (2010). SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction
scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder.
Cell Research, 20(7), 854–857.

Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008). Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols,
4(1), 44–57.

Iyengar, R. (2003). A composite schematic of gpcr signaling. Science Signaling.
Kam-Thong, T. et al (2011). EPIBLASTER-fast exhaustive two-locus epistasis

detection strategy using graphical processing units. European Journal of Human
Genetics, 19(4), 465–471.

Kanehisa, M. et al (2017). KEGG: new perspectives on genomes, pathways, diseases
and drugs. Nucleic Acids Research, 45, D353–D361.

Kelley, R. and Ideker, T. (2005). Systematic interpretation of genetic interactions using
protein networks. Nature Biotechnology, 23(5), 561–566.

Kincaid, E.Z. et al (2012). Mice completely lacking immunoproteasomes display major
alterations in antigen presentation. Nature Immunology, 13(2), 129–135.

Lander, E.S. (2011). Initial impact of the sequencing of the human genome. Nature,
470(7333), 187–197.

Lee, S.H. et al (2011). Estimating missing heritability for disease from genome-wide
association studies. The American Journal of Human Genetics, 88, 294–305.

Li, Z. et al (2003). Directional sensing requires gβγ-mediated PAK1 and PIXα-
dependent activation of Cdc42. Cell, 114(2), 215–227.

Liu, Y. et al (2012). Gene, pathway and network frameworks to identify epistatic inter-
actions of single nucleotide polymorphisms derived from GWAS data. BMC Systems
Biology, 6, S15.

Manolio, T.A. et al (2009). Finding the missing heritability of complex diseases.
Nature, 461(7265), 747–753.

Marcil, V. et al (2013). Association between the PTPN2 gene and crohn’s disease:
Dissection of potential causal variants. Inflammatory Bowel Diseases, 19, 1149–
1155.

Merck (2017). IUBMB-sigma-nicholson metabolic pathway charts.
Mootha, V.K. et al (2003). Pgc-1α-responsive genes involved in oxidative phospho-

rylation are coordinately downregulated in human diabetes. Nature Genetics, 34(3),
267–273.

Mrowicki, J. et al (2014). The role of polymorphisms of genes CXCL12/CXCR4 and
MIF in the risk development IBD the polish population. Molecular Biology Reports,
41, 4639–4652.

Nishimura, D. (2001). BioCarta. Biotech Software & Internet Report, 2(3), 117–120.
Noble, J.A. et al (2010). HLA class i and genetic susceptibility to type 1 diabetes –

results from the type 1 diabetes genetics consortium. Diabetes, 59, 2972–2979.
Obayashi, T. et al (2013). COXPRESdb: A database of comparative gene coexpression

networks of eleven species for mammals. Nucleic Acids Research, 41, D1014–
D1020.
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Supplementary methods
4.1 Permutation-based tests for studying the functional relationships between the genes in the gene-gene epistatic

interactions
In addition to the statistical tests described in the main text, we also used a permutation-based approach to evaluate the statistical significance
of the four functional relationships between genes in the gene-gene epistatic interactions.

For the PPI-connectedness test, we used the number of connected pairs in the PPI network as the test statistic. We first computed this
number for the gene pairs with epistatic interactions in the actual PPI network. We then produced 10,000 permuted networks and computed
the test statistic for each of them. The p-value was then defined as the fraction of permuted networks with a test statistic the same or larger
than the number in the actual PPI network. The permuted networks were constructed as follows. Each time, we randomly selected two PPI
pairs (p1, p2) and (p3, p4), and swapped their connections to become (p1, p3), (p2, p4) (Milo et al., 2002). The degree distribution of
the network was preserved by this operation. We used the first 100,000 times of edge swapping as burn-out to construct the first permuted
network. We then continued the procedure and obtained one permuted network for every 10,000 additional edge swaps, and repeated it until
getting 10,000 permuted networks.

For the PPI-distance test, we used the same procedure to produce permuted PPI networks, but used a different test statistic as follows.
We first computed the network distance between the two genes in each epistatically interacting pair. If the two genes were not connected in
the network, their distance was set to a value larger than the maximum distance of all gene pairs in the network. All these distance values
were then sorted, and the mean of the 50% smallest distance values was used as the test statistic. We checked the results to confirm that in
all our actual calculations, the test statistic never involved the artificial distance value assigned for the disconnected pairs. We chose this test
statistic instead of the mean or median of all the distance values because the mean of all the distance values would depend on the fraction
of disconnected pairs in the network, which was the subject of the PPI-connectedness test but not this PPI-distance test, while the median
would give very similar values for all networks due to the small-world property of PPI networks.

For the co-expression test, we constructed permuted networks by re-assigning mutual ranks of co-expression of all gene pairs randomly.
We constructed 10,000 permuted networks, and used the mean of the mutual rank among the epistatically interacting pairs as the test statistic.

For the same-pathway test, we constructed permuted pathways by assigning random genes to pathways, preserving the total number
of pathways and the number of genes in each pathway. We constructed 10,000 permuted pathways and used the number of epistatically
interacting gene pairs with the two genes co-occurring in at least one pathway as the test statistic.

As in the original tests described in the main text, we also tried the different ways to assign SNPs to genes, and repeated the tests considering
either all human genes as the background or only the genes in the original networks as the background.

Supplementary results
The results of the permutation-based statistical tests are shown in Figure S1.

Epistatic and functional interactions between NOD2 and TLE1 (due to the SNP rs6559629) have been implicated in the pathogenesis of
CD (Nimmo et al., 2011), but the underlying mechanisms remain largely unknown. As shown in Figure S2, we found that NOD2 and TLE1
form a cluster with 21 other genes from different chromosomes and different LD blocks that are enriched in various pathways, including
cytokine signaling in immune system (Bonferroni corrected p-value = 2.3E-5) and programmed cell death (Bonferroni corrected p-value
< 1E-14). NOD2 is a member of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, which functions as
intracellular microbial sensor of the innate immune system to regulate inflammation and cytokine production. TLE1 is a transcriptional co-
repressor that binds to transcription factors to regulate a wide range of cellular processes including cell growth and differentiation (Ali et al.,
2010) and inflammatory signaling (Ramasamy et al., 2016).

Our analysis suggests that interactions between NOD2 and TLE2 involve effector molecules of the TGF-β1-dependent pathway including
the SMAD and SMURF family of proteins. SMAD3 phosphorylation, an important step in the initiation of TGF-β1-mediated suppression of
intestinal inflammation, is significantly decreased in IBD patients compared to normal controls (Monteleone et al., 2001). Controlling TGF-
β1-associated and SMAD-associated signaling is a novel therapeutic strategy for the treatment of CD (Monteleone et al., 2015). Engagement
of the TGF-β1-signaling pathway by NOD2 may be mediated through physical interaction with ERBB2IP (Kufer et al., 2006), an adaptor
protein shown to inhibit TGF-β signaling by sequestering SMAD2/3 (Dai et al., 2007). Activated SMAD2/3 form a multi-protein complex
with SMAD4 and Runx3 to control the transcription of target genes in the nucleus (Chuang et al., 2017). Runx3 is capable of mediating
gene repression by recruiting the TLE-1 transcriptional co-repressor to target promoters (Yarmus et al., 2006). Several Runx3 SNPs have
been identified to associate with increased risks for CD (Weersma et al., 2008; Yamazaki et al., 2013). The Smad complexes can also bind
to another transcriptional repressor, FoxG1, which in turns antagonizes the effect of TGF-β signaling (Seoane et al., 2004). FoxG1 is also
known to recruit co-repressors including TLE1 to mediate gene repression (Dastidar et al., 2012).

In addition, NOD2 activation is linked to signaling through another innate receptor, TLR2, as both receptors can be activated by closely
related structures derived from bacterial peptidoglycan (Inohara et al., 2003). NOD2 exerts a synergistic or negative effect on TLR2 activation
in human monocytes depending on the dose of ligand stimulation, but this regulatory mechanism is lost in NOD2-deficient patients with
CD (Borm et al., 2008). Moreover, dysregulated expression of TLR2 has been found in the intestinal mucosa of IBD patients (Frolova et al.,
2008). TLR2 can also be activated to promote inflammation in the presence of extracellular HMGB1, a nuclear protein secreted by stressed or
dying cells in response to cellular damage (Park et al., 2004). HMGB-1 is a robust biomarker for inflammatory bowel diseases that correlates
with disease progression and therapeutic outcomes (Hu et al., 2015).
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(a) PPI connectedness tests
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(c) Co-expression tests
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(d) Same-pathway tests

Fig. S1: Box plots of the p-values obtained from (a) the PPI connectedness tests, (b) PPI distance tests, (c) co-expression tests, and (d)
same-pathway tests based on the permutation-based approach.

Another gene in the cluster encodes the NLRC4 protein, which belongs to the same NLR protein family as NOD2 and controls innate
immune response to bacterial pathogens. NLRC4 forms a multimeric complex called the inflammasome in response to specific bacterial
ligands, leading to activation of caspase-1 and production of pro-inflammatory cytokines, including IL-1β and IL-18. Caspase-1 activity, and
the levels of IL-1β and IL-18 are elevated in clinical samples of IBD patients (McAlindon et al., 1998; Siegmund, 2002), suggesting that
targeting the NLR-mediated inflammatory pathway maybe a therapeutic option for IBD. Thus, our results suggest that epistatic interactions
between NOD2 and TLE1 in CD may involve the counterbalance between NLR-mediated chronic inflammation in the gut and TGF-β/Smad
signaling-dependent suppressive activities through transcriptional repression involving the transcriptional co-repressor, TLE1.
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