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ABSTRACT 
 Residue coevolution has recently emerged as an important concept, 

especially in the context of protein structures. While a multitude of differ-
ent functions for quantifying it have been proposed, not much is known 
about their relative strengths and weaknesses. Also, subtle algorithmic 
details have discouraged implementing and comparing them. We ad-
dressed this issue by developing an integrated online system that en-
ables comparative analyses with a comprehensive set of commonly used 
scoring functions, including Statistical Coupling Analysis (SCA), Explicit 
Likelihood of Subset Variation (ELSC), mutual information, and correla-
tion-based methods. A set of data preprocessing options are provided for 
improving the sensitivity and specificity of coevolution signal detection, 
including sequence weighting, residue grouping, and the filtering of se-
quences, sites and site pairs. A total of more than 100 scoring variations 
are available. The system also provides facilities for studying the rela-
tionship between coevolution scores and inter-residue distances from a 
crystal structure if provided, which may help in understanding protein 
structures. 
Availability: The system is available at http://coevolution.gersteinlab.org. 
The source code and JavaDoc API can also be downloaded from the 
web site. 
Supplementary Information: Additional materials can be found at 
http://coevolution.gersteinlab.org/coevolution/supp.jsp. 

1 INTRODUCTION 
Coevolution (covariation/correlated mutation) is the change of a biological 
object triggered by the change of a related object. For example, the coding 
genes of some interacting proteins are preserved or eliminated together in 
new species (Pellegrini et al., 1999), or have similar phylogenetic trees 
(Goh et al., 2000). At the amino acid level, some residues under physical or 
functional constraints exhibit correlated mutations (Suel et al., 2003, Gloor 
et al., 2005, Socolich et al., 2005). Coevolving residues in a protein are 
detected in a two-step process: 1) the multiple sequence alignment (MSA) 
of the protein and its homologs is constructed or obtained; 2) a coevolution 
score is calculated for each pair of sites in the MSA. There are two main 
difficulties in this process. First, a large number of scoring functions have 
been proposed in the literature (see Halperin et al., 2006 for a recent survey). 
It can be difficult to choose from them, as they exhibit subtle yet significant 
differences, and it is likely that different applications would require differ-
ent functions. Second, coevolution analyses could be confounded by uneven 
sequence representations, insufficient evolutionary divergence, and the 
presence of gaps in the MSA. A successful coevolution study has to take all 
these details into account. 
To address this need, we have developed an integrated system that provides 
a simple interface for preprocessing data, computing coevolution scores, 
and analyzing the results. It offers a great variety of scoring variations (over 
100) for studying different types of proteins and testing different hypotheses. 
The workflow of the system is shown in Fig. 1. More details on the scoring 
functions, preprocessing options, and result analysis are provided below. 
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Fig. 1. The workflow of the system (a larger version can be found at the sup-
plementary web site). 

2 SCORING FUNCTIONS 
2.1 Correlation-based functions 
For a pair of sites i and j in an MSA, the correlation score  (Gobel et al., 

1994, Halperin et al., 2006) is computed as follows: 
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where sikl is the score for substituting the i-th residue of sequence k by that 
of sequence l, 

i
 and σi are the mean and standard deviation of substitution 

scores at site i, N is the number of sequences in the MSA, and wkl is the 
weight for the sequence pair k, l. If the two sites are coevolving in that radi-
cal substitutions at the first site are accompanied by radical substitutions at 
the second site, the correlation will be high. Our system provides the classi-
cal McLachlan matrix (McLachlan 1971) that scores substitutions based on 
the physiochemical properties of the residues, as well as matrices based on 
residue volume, pI, and hydropathy index, for studying the properties indi-
vidually. Two variations are provided for each of them: the “absolute value 
version” considers only the magnitude, while the “raw version” also consid-
ers the direction of change, for detecting compensatory mutations. The 
correlation can be computed from raw values (Pearson correlation) or from 
value ranks (Spearman correlation, Pazos et al., 1997). Several schemes are 
provided for the weights wkl, preventing false coevolution signals due to 
uneven sequence representation or site conservation. 
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2.2 Perturbation-based functions 
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The idea of perturbation-based functions is to perform a “perturbation” at a 
first site, and observe its effect on a second site. The Statistical Coupling 
Analysis (SCA) method (Lockless and Ranganathan 1999) defines a statis-
tical energy term for a site, and computes the energy change at a second site 
when the first site is perturbed by retaining only the sequences with a cer-
tain residue.1 The Explicit Likelihood of Subset Variation (ELSC) method 
(Dekker et al., 2004) is based on the same idea, but has the energy computa-
tions replaced by probabilities according to hypergeometric distributions. 
The mutual information (MI) method (Gloor et al., 2005) can be viewed as 
a generalized perturbation method that considers the subsetting of all twenty 
kinds of residues, and combines them by a weighted average according to 
their frequencies. To deal with finite sample size effects and phylogenetic 
influence, the normalization options in (Martin et al., 2005) are also pro-
vided. 
2.3 Independence tests 
The chi-square test (c.f. the OMES method, Larson et al., 2000) and the 
quartets method (Galitsky 2003) both identify site pairs that are unlikely to 
be independent. The former computes the p-value under the null hypothesis 
of independent sites. The latter counts the number of quartets in the two-
dimensional histogram of residue frequencies that deviate considerably 
from the expectation. 

3 PREPROCESSING OPTIONS 
To improve the sensitivity and specificity of the functions, options are pro-
vided for preprocessing sequences, sites and site pairs. 
3.1 Sequence filtering and weighting 
Sequences that contain too many gapped positions or are too similar to 
others in the MSA (which might cause sites to appear coevolving) can be 
removed by specifying the gap and similarity thresholds respectively. A 
minimum number of sequences can also be specified to avoid small sample 
size effects. 
A sequence weighting scheme based on the topology of the phylogenetic 
tree (Gerstein et al., 1994) and one based on Markov random walk are pro-
vided. Both schemes down-weigh sequences that are very similar to others 
in the MSA. 
3.2 Site filtering 
After sequence filtering, sites that contain too many gaps or are too con-
served can be discarded. The former is likely non-informative, while the 
latter may artificially inflate some coevolution scores. 
3.3 Site pair filtering 
Sites that are close in the primary sequence may produce trivial coevolution 
signals that hide other more unexpected coevolution events. Such site pairs 
can be filtered by specifying the minimum sequence separation. It has also 
been observed that insertions/ deletions of multiple residues may create 
artificial coevolution signals (Patel et al., unpublished data). An option is 
provided for filtering site pairs that participate in the same gaps in too many 
sequences. 
3.4 Other options 
Grouping similar residues into a smaller alphabet may increase the sensitiv-
ity (Pollock et al., 1999). Our system provides two residue groupings pro-
posed in the literature (Elcock and McCammon, 2001 and Guharoy and 
Chakrabarti, 2005). It has also been observed that gaps might give impor-
tant coevolution signals (Patel et al., unpublished data). An option is pro-
vided for treating gaps as noise or as the 21st residue when computing co-
evolution scores. 

4 SCORES ANALYSIS 
In some proteins coevolving residues tend to be close to each other in the 
3D structure (Dekker et al., 2004, Gloor et al., 2005). This suggests that the 
instability created by the mutation of a residue may be (partially) compen-
sated for by a corresponding mutation of a close residue. Coevolution sig-
nals may thus convey some information about the protein structure. For 
instance it is interesting to study how well the coevolution scores predict the 
residue contact map (Halperin et al., 2006). Our system provides functions 
for plotting and analyzing the coevolution scores against inter-residue dis-
tances, and standard machine-learning techniques (e.g. ROC curve) for 
evaluating the effectiveness of the various coevolution functions in predict-
ing interacting residues. A shuffling scheme for evaluating the significance 
of the scores is also provided in the program package for running locally. 
  
1 Our implementation provides an asymmetric SCA score matrix, as well as extra 
summarizing statistics. Details can be found at the supplementary web site. 

5 EXAMPLE 
We provide a worked example of our system in operation on the web site, 
which illustrates coevolution in the transmembrane protein bacteriorhodop-
sin due to physically constrained residues not adjacent in the primary se-
quence. The example can be easily loaded by clicking the corresponding 
link on the main page. Running the example will compute the coevolution 
scores between site pairs separated by at least 3 residues. The scatterplot for 
coevolution scores against inter-residue distances generated using a known 
PDB structure (Fig. 1) shows that residue pairs receiving high scores do 
tend to be closer in the crystal structure. 
Due to the intensive computation involved in the score calculations, cur-
rently only one scoring function is allowed to be used each time. Anyone 
interested in performing large-scale comparisons can download the Java 
programs from the web site and run locally on most platforms (Windows, 
Macintosh, Linux, UNIX, etc.). Detailed installation instructions are pro-
vided on the web site. 
6 DISCUSSION 
Although the scatterplot in Figure 1, and other studies in the literature, have 
suggested some relationships between coevolution and physical constraints, 
to what extent could coevolution scores help understand physical structures 
remains unclear. We hope the current application could serve as a neutral 
tool for further exploration in this area. 
The current system focuses on functions that do not assume any mutation 
models. Other functions, such as the likelihood method in (Pollock et al., 
1999) and the Bayesian mutational mapping method (Dimmic et al., 2005) 
may be added in a later version. 
Coevolution signals have been used in recent studies to predict sequence 
regions involved in protein-protein interactions with different levels of 
success (Pazos and Valencia 2002, Halperin et al., 2006). We plan on ex-
tending the system to include inter-protein residue coevolution in the next 
phase of development. 
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