
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
ECCB 2020

Genome

A general near-exact k-mer counting method with
low memory consumption enables de novo
assembly of 106× human sequence data in 2.7
hours
Christina Huan Shi 1 and Kevin Y. Yip 1,2,3,∗

1Department of Computer Science and Engineering, 2Hong Kong Bioinformatics Centre, 3Hong Kong Institute of Diabetes and
Obesity, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Abstract

Motivation: In de novo sequence assembly, a standard pre-processing step is k-mer counting, which
computes the number of occurrences of every length-k sub-sequence in the sequencing reads. Sequencing
errors can produce many k-mers that do not appear in the genome, leading to the need for an excessive
amount of memory during counting. This issue is particularly serious when the genome to be assembled
is large, the sequencing depth is high, or when the memory available is limited.
Results: Here we propose a fast near-exact k-mer counting method, CQF-deNoise, which has a module
for dynamically removing noisy false k-mers. It automatically determines the suitable time and number
of rounds of noise removal according to a user-specified wrong removal rate. We tested CQF-deNoise
comprehensively using data generated from a diverse set of genomes with various data properties, and
found that the memory consumed was almost constant regardless of the sequencing errors while the noise
removal procedure had minimal effects on counting accuracy. Compared with four state-of-the-art k-mer
counting methods, CQF-deNoise consistently performed the best in terms of memory usage, consuming
49-76% less memory than the second best method. When counting the k-mers from a human data set
with around 60× coverage, the peak memory usage of CQF-deNoise was only 10.9GB (gigabytes) for
k=28 and 21.5GB for k=55. De novo assembly of 106× human sequencing data using CQF-deNoise for
k-mer counting required only 2.7 hours and 90GB peak memory.

Introduction
The high-throughput nature and ever decreasing cost of sequencing
technologies have enabled the development of experimental methods for
a variety of applications (Goodwin et al., 2016; Reuter et al., 2015). For
applications that produce a large number of sequencing reads, directly
operating on the reads could be slow and memory-prohibitive when
the depth-of-coverage is high. As a result, it has become common to
summarize the sequencing data by the list of all k-mers (i.e., length-
k sub-sequences) and their occurrence frequencies. These k-mer counts
are useful for various downstream tasks, including error correction (Heo
et al., 2014; Lim et al., 2014; Luo et al., 2012), de Bruijn graph

construction (Jackman et al., 2017; Luo et al., 2012; Souvorov et al.,
2018), read clustering and query (Solomon and Kingsford, 2016), and
genome size estimation (Li and Waterman, 2003; Li et al., 2010).

In k-mer counting, the major computational concerns include counting
and querying efficiency, and memory consumption. These issues are
particularly critical when the sequenced genome is large, depth-of-
coverage is high, or when there is a limited amount of memory available.

One way to reduce memory consumption while allowing efficient
k-mer queries is to use AMQ (Approximate Membership Query) data
structures. These structures are for querying whether a particular object
(a k-mer in this case) is contained in a set/multi-set. If the set contains
the object, the query result is always positive, and thus these structures
guarantee no false negatives; If the set does not contain the object, there is

© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



2 Shi and Yip

a certain probability that the query result would still be positive, and the
rate of such false positives is determined by properties of the data structure.

One widely used AMQ data structure is the Bloom filter, which is
a bit vector for recording the objects stored based on a list of hash
functions (Bloom, 1970). The Bloom filter can be used for object counting,
by having c bits for each data slot to record how many times this slot is
set, which forms a counter with a value up to 2c − 1 (Fan et al., 2000).

The counting quotient filter (CQF) (Pandey et al., 2017a) is an AMQ
data structure for object counting that is more space-efficient than the
counting Bloom filter, and it allows dynamic re-sizing of the data structure
as more data are added. We explain CQF in detail in Materials and Methods.

A practical issue of k-mer counting is the presence of sequencing errors,
which increases the number of unique k-mers by creating false k-mers that
do not exist in the original sequences. Since the number of distinct random
errors grows with the number of sequencing reads produced, the memory
consumption of k-mer counts can increase with sequencing depth even
though the number of true k-mers in the original sequences stays constant.

An important property of false k-mers is that they usually have much
lower occurrence counts than the true k-mers due to the random nature
of most sequencing errors. Therefore, some previous methods simply
assume low-frequency k-mers are errors and discard them. For example,
BFCounter (Melsted and Pritchard, 2011) and Turtle (Roy et al., 2014)
use a Bloom filter to detect whether a k-mer has been encountered before
and a separate data structure for the actual counting of k-mers that appear
at least twice. In this way, the singletons (k-mers that appear only once in
the sequencing reads) will not take up space in the second data structure.
Similarly, Jellyfish2 (Marçais and Kingsford, 2011) first uses a counting
Bloom filter with a small number of bits per slot to identify k-mers that
appear more than a pre-defined number of times, and anther data structure
for counting these high-frequency k-mers.

We argue that these approaches to handling false k-mers are not ideal in
two aspects. First, false k-mers take up space of the data structures during
counting and thus they should be removed as early as possible. Although
methods such as BFCounter attempt to minimize the memory occupied by
the false k-mers by counting only the high-frequency ones in the second
data structure, the first structure for identifying the high-frequency k-mers
still contains both the true and false k-mers. Second, using an extra step to
identify singletons leads to extra overheads in terms of running time and
possibly memory consumption. It would be more preferable to combine
counting and false k-mer removal in the same process.

Here we propose the CQF-deNoise method that uses the CQF data
structure for counting k-mers while removing false k-mers on the fly, an
idea previously explored in the problem of read indexing (Chapuis et al.,
2011). Based on a user-specified wrong removal tolerance threshold, CQF-
deNoise automatically determines the suitable time and number of rounds
of false k-mer removal. As a result, the number of unique k-mers in the
CQF remains largely constant during the counting process and is much
smaller than the total number of unique true and false k-mers. We show
that as compared to several state-of-the-art k-mer counting methods, CQF-
deNoise consumes less memory, runs competitively fast, but at the same
time gives k-mer counts that are highly accurate. We further develop a de
novo sequence assembly method using CQF-deNoise for k-mer counting,
and show that it uses much less memory or running time as compared to
several commonly used methods while achieving similar assembly quality.

Materials and Methods

The counting quotient filter

CQF-deNoise uses CQF for counting k-mers efficiently, with a de-noise
method for removing k-mers that likely occur due to sequencing errors.

Here we first explain how CQF works and how we implemented it, and
then we will describe our de-noise method in the next subsection.

CQF is an AMQ data structure for object counting. It represents a
multiset S by using a hash function h to map every object x to a p-bit
representation, where p = log2

n
δ

, n is the expected maximum number
of distinct objects in S, and δ is the desired false positive query rate.
Unlike the Bloom filter that directly uses all p bits as the signature of an
object, in CQF, the first q bits (called the quotient) are used to determine
the canonical memory slot (called the “home slot”) that an object should
be stored in, and the remaining r = p − q bits (called the remainder)
are actually stored in the memory slot to indicate that the slot contains an
object with that signature. The CQF thus contains a table of 2q data slots
each storing r bits of data. When collision occurs, i.e., when an object’s
home slot has already been taken by another object, the exact memory slot
to be used for storing it is determined by a variant of linear probing, with
the objects assigned to adjacent slots following the same order as their
hash values. Object insertion, query and deletion are all assisted by some
additional metadata that contain information about whether the CQF has
stored any object with a particular quotient and where each run of data
slots of objects with the same quotient ends.

In the implementation of CQF in Squeakr (Pandey et al., 2017b), object
counts are stored in three different ways based on their values. For an
object that has appeared only once, no additional information is stored.
For an object that has appeared twice, an additional slot is assigned right
after the original slot, and it also stores the same remainder value of the
object. For an object that has appeared three or more times, right after
the original slot assigned to the object, one or more additional slots are
assigned as the counter of the object, followed by another slot storing
the remainder of the object again to signify the end of the counter. The
number of slots assigned to the counter can be dynamically modified,
such that CQF can handle object counts of very different magnitudes at
the same time. To distinguish between a slot storing a remainder and one
storing a counter, the first slot assigned as part of the counter must have
a value smaller than the remainder of the object. This is sufficient for
indicating that the slot is a counter, because by definition objects in the
same run are stored in ascending order of their remainder values. The
encoding scheme for counters also employs some additional rules to make
sure that all combinations of remainder and counter values can be stored
and retrieved correctly (to be explained below).

Our implementation of CQF, with a more
space-efficient counter encoding scheme

We adopted the implementation of CQF in Squeakr on the basis of
its efficient C++ code and multi-threading option, but we made two
important changes. First, since we mainly applied it to DNA sequences, we
chose the ntHash function specifically designed for nucleotide sequences,
which was shown to perform better than several mainstream hash
functions (Mohamadi et al., 2016). Second, we proposed a new, more
efficient encoding scheme based on Most-Significant Bit (MSB). The basic
idea is to use the most significant bit to indicate whether the current counter
still occupies additional slot(s), rather than storing the remainder of the
object again after the last counter slot.

Specifically, suppose the occurrence count of an object with remainder
x is C, and each remainder occupies r bits. As in the case of the original
encoding scheme of CQF, how the occurrence count is stored in CQF-
deNoise depends on the values of C and r. If C = 1, a single slot is
assigned that stores x as its value. If C > 1, multiple slots are assigned,
with the first slot storing x as its value and the remaining slots storing
an encoding of the counter. Since such counter slots are used only when
C > 1, we store C − 1 instead of C. To determine how C − 1 is
represented, we convert it into binary form and count the number of bits



3

required. Suppose b bits are needed, then d b
r−1
e slots are allocated, and

the last r − 1 bits of each of these slots together store the binary form of
C − 1. After that, for all the counter slots except the last one, the most
significant bit among its r bits is set to 1, to indicate that it is not the last
slot of this counter. Finally, if the number stored in the first of these counter
slots is larger than x, a slot storing the value zero is added at the beginning
as an additional escape value.

There are several major differences between the original encoding
scheme of CQF and the encoding scheme of CQF-deNoise:

• CQF stores x both before and after the counter slots, while CQF-
deNoise only stores it before the counter slots. Instead, every counter
slot reserves the most significant bit to indicate whether there are more
counter slots to come or not.

• CQF reserves the values0 andx for special meanings, such that counter
values need to be encoded in a way that depends on x. In contrast,
counter values in CQF-deNoise can be easily determined by simply
ignoring the most significant bit of each counter slot.

• CQF needs to specially handle the case x = 0 since it requires putting
a value smaller than x in the first counter slot. CQF-deNoise does not
need to consider x = 0 as a special case, since it only requires putting
a value smaller than or equal to x in the first counter slot.

Table 1 compares the two encoding schemes using some examples.

Table 1. Comparing the two encoding schemes. Examples are shown to show
how the original CQF and CQF-deNoise encode the occurrence count C of an
object with remainder x containing r = 5 bits.

x C Original CQF encoding CQF-deNoise encoding
4 1 00100 00100
4 2 00100,00100 00100,00001
4 3 00100,00001,00100 00100,00010
4 6 00100,00000,00101,00100 00100,00000,00101
4 17 00100,00000,10000,00100 00100,00000,10001,00000
4 64 00100,00011,00010,00100 00100,00000,10011,01111
4 128 00100,00000,00110,00111,00100 00100,00000,10111,01111
0 1 00000 00000
0 2 00000,00000 00000,00000,00001
0 3 00000,00000,00000 00000,00000,00010
0 4 00000,00001,00000,00000 00000,00000,00011
0 17 00000,01110,00000,00000 00000,00000,10001,00000
0 64 00000,00010,11110,00000,00000 00000,00000,10011,01111
0 128 00000,00101,00001,00000,00000 00000,00000,10111,01111

From Table 1, we can see that the encoding scheme of CQF-deNoise
rarely uses more slots than the scheme of CQF. In fact, by not having the
remainder stored twice before and after the counting slots, the encoding
scheme of CQF-deNoise usually consumes less space. Table 2 compares
the number of slots required by the two encoding schemes for all possible
occurrence counts within two practical ranges in genomic applications. In
these two settings, the encoding scheme of CQF-deNoise consumes less
memory in 61% and 22% of the cases, respectively, while it consumes
more memory in only 0% and 3% of the cases.

The de-noise method: overview

The main idea of our de-noise procedure is to identify low-frequency k-
mers and remove them from the CQF during the counting process. The
objectives are: 1) to remove false k-mers as early as possible, and 2)
to avoid wrongly removing true k-mers. Intuitively, false k-mers can be
more confidently identified at the late stage of counting, since at that time
the true k-mers should have clearly higher counts than the false ones. In

Table 2. Space efficiency of the two encoding schemes. The numbers of counter
values C within the specified ranges for which the encoding scheme of CQF-
deNoise requires one fewer (-1), the same (0) or one more (1) counter slot
as compared to the original CQF encoding scheme are shown, considering all
possible remainders that contain r = 8 bits.

Range Number of CQF-deNoise slots - number of CQF slots
of C -1 0 1
[1, 28] 40,255 (61%) 25,279 (39%) 2 (0%)
[1, 216] 2,731,697 (22%) 12,541,391 (75%) 504,128 (3%)

contrast, at the early stage of counting, even true k-mers may also have
low counts, making them indistinguishable from the false k-mers. There is
thus a trade-off between our two objectives. We handle it by taking a user-
specified parameter of the tolerable ratio of true k-mers being wrongly
removed, to determine the number of rounds of noise removal and the
suitable time for performing each round.

Specifically, CQF-deNoise removes suspected false k-mers m times
during the counting process. In each round, all singleton k-mers (i.e., those
having an occurrence count of one at that time) are removed as suspected
false k-mers. As a result, any k-mer with a total occurrence count larger
than m is guaranteed to remain in the CQF at the end of the counting
process, although its final count can be smaller than its actual count by
a difference up to m − 1. On the other hand, k-mers with an occurrence
count equal to or smaller than m may or may not remain in the CQF at
the end, depending on whether it appears exactly once between every two
rounds of noise removal.

The number of noise removal rounds, m, is determined as follows.
First, define m′ as the largest integer such that the fraction of true k-
mers with an occurrence count of m′ or less is smaller than the user-
specified threshold. In other words, m′ serves as a conservative estimate
of the maximum number of noise removal rounds that can be performed,
and it can be estimated based on the genome size, sequencing depth and
sequencing error rate as explained below. On the other hand, the size of
the CQF depends on the number of noise removal rounds, and different
numbers of rounds could lead to the same CQF size. For instance, if m′

rounds andm′−1 rounds would both lead to the same CQF size, it is better
to use m′ − 1 rounds because the rate of wrongly removing true k-mers
would be smaller but the memory requirement stays the same. Therefore,
m is chosen as the smallest integer such that the CQF size would be the
same as the one with m′ rounds of noise removal.

The de-noise method: estimating the true-to-false
k-mer ratio

Suppose the genome size isG and sequencing reads each of length l have
been generated to an average genome-wide depth-of-coverage of d. The
total number of k-mers on these reads isN = Gd

l
(l−k+1). Suppose that

among these k-mers, the ratio of true k-mers that come from the genome
to false k-mers that occur due to errors is R, the number of true k-mers
will be NR

R+1
. Finally, if the number of unique true k-mers is u, their

average occurrence count will be NR
(R+1)u

. Accordingly, the occurrence
counts of the true k-mers are expected to follow a Poisson distribution
with parameter λ =

Gd(l−k+1)R
l(R+1)u

, and m′ = bF−1(w)c, where F is
the cumulative distribution function of the Poisson distribution and w is
the user-specified tolerable ratio of true k-mers being wrongly removed.

In the above formula, l and d are properties of the sequencing data, k
and w are user parameters, G is either prior knowledge supplied by the
user or estimated using an efficient method such as ntCard (Mohamadi
et al., 2017), which provides basic statistics of k-mers but cannot give
their exact occurrence counts. The total number of unique true k-mers, u,
is not known a priori, but an upper bound of it can be used, the value of



4 Shi and Yip

which can be obtained by assuming all k-mers in the genome are unique.
This leaves us with the last variable, the true-to-false k-mer ratio, R.

Here we describe an algorithm that can compute this ratio based on
the error profile of sequencing reads, i.e., the base error rate of each read
position. The error profile is platform dependent. For example, for Illumina
short reads, the base error rate is highest at the beginning and the end of
each read. For simplicity, we assume that whenever an error occurs in a
k-mer, the resulting k-mer is always not present in the genome, although
in reality a small portion of these error-containing k-mers can actually be
found in the genome.

The main difficulty of this calculation is that there are spatial
dependencies in two ways. First, if a base error appears at a read position,
it turns all k-mers that overlap this position into false k-mers at the same
time. Second, if multiple base errors appear at nearby positions, together
they create a smaller number of false k-mers (with some false k-mers
containing multiple errors) than when they are far apart.

To handle these spatial dependencies, we use a dynamic programming
algorithm to compute the probabilities of error positions. Suppose the error
profile is given in the form of a length-l vector of base error probabilities e,
where l is the length of each sequencing read. We define a two-dimensional
table V (i, j) to denote the probability that among the k consecutive
positions ending at position i (where i ranges from k to l), the j-th of
them is the last position with a base error. For example, if k = 4, V (6, 2)

is the probability that among read positions 3, 4, 5 and 6, the last error
occurs at position 4 (which is the second position among these positions).
We also define V (i, 0) as the probability that among the k consecutive
positions ending at position i, there is not a base error.

Table V is initialized by considering the first row, i = k:

V (k, j) =


ek if j = k

ej
∏k
j′=j+1(1− ej′ ) = ejV (k, j + 1)

1−ej+1

ej+1
if j ∈ [1..k − 1]∏k

j′=1(1− ej′ ) = V (k, 1) 1−e1
e1

if j = 0

The remaining rows of V can be filled in according to the values in the
previous row:

V (i, j) =

 ei if j = k

V (i− 1, j + 1)(1− ei) if j ∈ [1..k − 1]

[V (i− 1, 1) + V (i− 1, 0)] (1− ei) if j = 0

Since we assume that a k-mer is a true k-mer if and only if there is not a
base error in any of the k positions, the expected number of true k-mers in
a read is

∑l
i=k V (i, 0). Therefore, the true-to-false k-mer ratio is given

by R =
∑l

i=k V (i,0)

l−k+1−
∑l

i=k
V (i,0)

.

The V table contains (l − k + 1)(k + 1) entries, each requiring a
constant amount of time to fill in. Therefore, the time complexity of the
algorithm isO((l− k)k), which is also a constant with fixed k and l. The
space complexity is O(k), since once a row has been filled in, all entries
in the previous row can be discarded.

If the detailed error profile is not available and every read position is
assumed to have the same base error rate of e0, it can be easily proved that

the true-to-false k-mer ratio is R =
(1−e0)k

1−(1−e0)k
.

To test our algorithm, we generated a simulated data set using
ART (Huang et al., 2011) assuming the Illumina MiSeq v3 protocol. Using
the F. vesca reference genome FraVesHawaii_1.0, we generated reads of
l=250bp to an average genome-wide depth-of-coverage of d = 50×. By
aligning the reads to the reference, the average base error rate was found to
be 0.4%, and the actual ratio of true k-mers to false k-mers was 8.93 when
k was set to 28. When we assumed every position to have the same base
error rate of e0 = 0.4%, we obtained an estimated true-to-false k-mer
ratio of R = 8.41 based on the above formula. When we instead ran our

dynamic programming algorithm using the platform-specific error profile,
we obtained an estimated true-to-false k-mer ratio of R = 8.87, which is
closer to the actual value of 8.93.

We also compared the true-to-false k-mer ratios estimated by the two
methods using sequencing data from the haploid hydatidiform mole CHM1
(SRA accession: SRR642626), the haploid nature of which ensures that
there are no heterozygous variations. We aligned the sequencing reads to a
high-quality assembly (GenBank accession: GCA_001297185.2) (Vollger
et al., 2019), and obtained the real true-to-false k-mer ratio to be 15.75.
When we assumed every position on a sequencing read to have the same
error rate, estimated using BBMap (v38.86) (Bushnell, 2020), we obtained
an estimated true-to-false k-mer ratio of 6.97. When we allowed each
position to have a separate error rate instead, we obtained an estimated
ratio of 9.73. These results again show that using a position-specific error
profile can lead to a more accurate estimate.

If the error profile involves indels, which are common for some
platforms such as PacBio SMRT sequencing, our dynamic programming
algorithm can be extended to handle additional insertion and deletion states
between read positions. We do not pursue this in the current study.

The de-noise method: time to perform de-noise

With the true-to-false k-mer ratio R estimated, the number of rounds of
k-mer removal m can be computed accordingly as explained. The next
question is when these m rounds of k-mer removal should be carried out.
Based on the variables defined above, the total number of false k-mers is
N
R+1

. To keep the size of the CQF at its minimum, it would be the best to
remove these false k-mers evenly across the m rounds of removal. Based
on this idea, in the worst case, if all the true k-mers have already been
encountered before the target number of false k-mers is reached, the CQF
will contain u+ N

(R+1)m
unique k-mers in total. This value is used as the

threshold to trigger the next round of k-mer removal.
Although in the above discussion we have ignored repeat sequences in

the genome, as shown in the Results section, our procedure is still effective
in removing false k-mers from the resulting sequencing data.

Another limitation of the above derivations is that we have used the
probability for a true k-mer to have an occurrence count no more than m
to quantify wrong removals, but these true k-mers can actually stay in the
CQF as long as it has two new occurrences between any two consecutive
rounds of removal. Therefore, the actual wrong removal rate is usually
lower than the user-defined tolerance threshold.

Comparing with other k-mer counting methods

We compared the running time and memory usage of CQF-deNoise with
four state-of-the-art k-mer counting methods, namely BFCounter (Melsted
and Pritchard, 2011), Jellyfish2 (Marçais and Kingsford, 2011),
KMC3 (Kokot et al., 2017), and Squeakr (Pandey et al., 2017b).
BFCounter, Jellyfish2 and Squeakr were memory-based, while KMC3
was designed to be a disk-based method, although it also provided an in-
memory mode, which we used in our comparisons. These five methods
were compared using five real sequencing data sets with diverse properties
(Table 3). All our tests were run on a machine with Intel(R) Xeon(R) CPUs
(E7-4850 v3 @2.20GHz with 112 cores and 35.8MB L3 cache), 504GB
RAM and 3TB SSD. All programs were run with 16 threads. Running
time was defined as the wall clock time, during which the program loaded
and parsed the sequencing data, counted the k-mers, and wrote the results
to output files on the disk. Memory consumption was defined as the peak
resident set size (RSS). All disk operations were performed in SSD, thus
giving advantages to disk-based methods in terms of running time.

All methods were tested for k = 28 and k = 55, which are values also
used in some previous studies (Kokot et al., 2017; Pandey et al., 2017b).
To handle the issue that sequencing reads could come from either strand,



5

Table 3. Data sets used for testing the performance of CQF-deNoise and comparing it with other methods. Data sets were chosen from four species with very
different genome sizes. The sequencing data also had different depths of coverage of the respective genomes.

Data set Reference genome Genome size (Mb) Data sets (SRA accessions) Total read length (Gb) Depth-of-coverage
C. elegans WBcel235 100 SRR7693585-7693591 29.0 290×
F. vesca FraVesHawaii_1.0 240 SRR072005-072014, 072029, 5275218,

5799056-5799057
14.1 59×

Z. mays B73 RefGen_v4 2,100 SRR7753852-7753853, 7753855, 7753858-
7753861, 7753878-7753884

128.8 61×

H. sapiens (1) GRCh38.p12 3,257 SRR2831527-2831541 199.6 61×
H. sapiens (2) GRCh38.p12 3,257 SRR2831454-2831489 343.9 106×

Table 4. Statistics of running CQF-deNoise on the 5 data sets with k=28. The wrong removal rate tolerance thresholds were automatically determined by CQF-deNoise.

Data set
Quotient
q

Estimated
mean coverage
of true k-mers

Wrong removal
rate tolerance
threshold t

Number of
noise removal
rounds

Range of t that would
lead to the same number
of noise removal rounds

Actual wrong
removal rate of
true k-mers

C. elegans 29 171 8.4×10−9 17 [1.6×10−51, 1] 1.6×10−51

F. vesca 31 29 2.9×10−9 2 [1.1×10−10, 7.3×10−4] 1.1×10−10

Z. mays 33 60 6.2×10−10 1 [5.3×10−25, 6.9×10−6] 5.3×10−25

H. sapiens (1) 33 61 3.7×10−10 11 [4.3×10−15, 1] 4.3×10−15

H. sapiens (2) 33 96 3.5×10−10 21 [2.2×10−20, 1] 2.2×10−20

among each k-mer and its reverse complement, we converted the one with
a larger hash value to the one with a smaller hash value before counting.

To make the comparisons fair, we ran all programs with the option of
removing singleton k-mers chosen if this option was provided, as follows.
For BFCounter, it had the ability to remove singleton k-mers by only
counting the non-singletons in the second structure. For CQF-deNoise,
we set the wrong removal rate tolerance threshold w to the conservative
value of 1/genome-size, and let the algorithm determine the number of
rounds of noise removal automatically. We found that the number of noise
removal rounds remained unchanged for long ranges of this threshold
value (Table 4), showing that the counting results would be highly stable
for different values used. For Jellyfish2 and KMC3, we selected the mode
to save k-mers with an occurrence count at least 2. Squeakr did not provide
an option for removing singleton k-mers. Since a brute-force enumeration
of all the k-mers and removal of the singletons after counting could be
very slow, we did not perform it.

BFCounter and Jellyfish2 required the maximum number of unique k-
mers as input, which we computed using ntCard (Mohamadi et al., 2017).
CQF-deNoise required the number of true k-mers as an estimation of
genome size and the total number of k-mers as inputs, and Squeakr required
the number of slots in the CQF as input, which were all estimated based
on the output of ntCard. CQF-deNoise also used the results of ntCard to
determine the fraction of singleton k-mers for estimating the uniform base
error rate e0 in the comparisons. In the time measurements, the running
time of ntCard was also added to the total running time of Squeakr and
CQF-deNoise but not BFCounter or Jellyfish2, since the latter two methods
could also obtain their required inputs by some faster means.

Squeakr could use x86 bit manipulation instructions to speed up by a
factor of 2-4 (Pandey et al., 2017b). Our machine did not support these
instructions. Although the resulting running time could not fully reflect
the counting speed of Squeakr, CQF-deNoise was also disadvantaged in
the same way, because its implementation could use these instructions as
well. When running Squeakr, we used the fast ntHash function (Mohamadi
et al., 2016) rather than the default Murmur hash function.

Default values were used for all other parameters of the methods.

Additional tools provided in our implementation

We provide a list of additional tools for various CQF operations, including
downsizing, intersection, addition, and subtraction, which are useful in

different applications. These tools enable logical and arithmetic operations
to be directly performed on the occurrence counts efficiently rather than
the raw sequencing reads that would require a lot more time.

Downsizing is to resize a CQF that uses p1 bits of hash values to one
that uses p2 (p2 < p1) bits. One use of it is to compress the data structure
to use less space, especially when the occupancy is low. It also facilitates
other operations such as taking the intersection or difference of two CQFs.
Downsizing can be efficiently performed by simply iterating through all
the objects in the original CQF and inserting the transformed hash values
into the new CQF, keeping only the first p2 bits of its original signature
as its new signature. Since objects originally having the same quotient
will still have the same quotient after the downsizing, their sort order is
maintained, which avoids shifting of the contents, the step usually most
time consuming during object insertion.

Intersection is to identify the objects commonly contained in two CQFs
and produce two new CQFs that contain only the common objects and their
corresponding counts in the original CQFs.

Addition and subtraction respectively compute the sum and difference
of the object occurrence counts in two CQFs. In a subtraction, objects with
a resulting non-positive count are removed from the output CQF.

De Bruijn graph-based genome assembly using
CQF-deNoise for k-mer counting

We implemented a de Bruijn graph (DBG)-based de novo genome
assembler, SH-assembly, that uses CQF-deNoise to perform k-mer
counting. To construct the DBG, the k-mer in the middle of each read
is sampled, with a flag added to each slot of the CQF indicating whether
a k-mer stored there has already been added to the DBG. If the flag has
not been set for the sampled k-mer, all four possible next k-mers will
be constructed by deleting the first nucleotide of the original k-mer and
appending A, C, G or T to the end. If the CQF returns a count higher than
a minimum requirement for one or more of these possible next k-mers,
the corresponding new edge(s) will be added to the DBG and the flags of
both the original k-mer and these supported next k-mer(s) will be set. This
procedure is repeated until all next k-mers have been added to the DBG
or no next k-mers can be found from the CQF. This extension procedure
is performed in both forward and reverse directions. The resulting DBG is
then compacted such that each unitig, defined as a longest unbranched path,
is represented by a single node. The compacted DBG is then simplified



6 Shi and Yip

using the graph simplification module in Minia (Chikhi and Rizk, 2013) for
removing potentially erroneous structures such as tips and bulges. Finally,
a list of contigs are produced from the simplified graph.

In our implementation of SH-assembly, k-mer counting and DBG
compaction can be performed with multiple threads in parallel.

We compared the running time, peak memory/disk usage and assembly
quality of SH-assembly with three commonly used DBG-based assembly
methods, namely SOAPdenovo2 (Luo et al., 2012) (v2.04), ABySS
2.0 (Jackman et al., 2017) (v2.2.3), and Minia (Chikhi and Rizk, 2013)
(v3 git commit 3eb6f54), using the C. elegans and H. sapiens (2) data sets
(Table 3). In terms of k-mer counting, SOAPdenovo2 uses hash tables,
ABySS2.0 uses Bloom filter (also to represent the DBG in order to save
space), and Minia 3 builds upon the graph compaction method BCALM
2 (Chikhi et al., 2016) for k-mer counting and unitig constructions.

We compared the assemblers up to the step of contig construction, since
assembling the contigs into scaffolds does not require k-mer counting. For
SOAPdenovo2, the “pregraph" and “contig" modules were run for contig
assembly. ABySS 2.0 could be run with or without using Bloom filter, and
we tested both settings. When running it using Bloom filter, we estimated
the number of hash functions,H , to− log2 ε, where εwas the false positive
rate (FPR) and we set it to 5% according to the recommendation of the
authors that it should be no more than 5%. Accordingly, the number of
hash functions used wasH = 4. In addition, ABySS 2.0 had a parameter,
B, that defined the total size of two Bloom filters, one for counting k-mers
and one for tracing the k-mers in the contigs, with the former eight times
the size of the latter according to the user manual. We set the size of the
latter to m = −n∗ln ε

(ln 2)2
, where n was the total number of unique k-mers

obtained from ntCard. The value of B was then set accordingly to 9m.
Minia 3 was run with maximum disk space of 500GB using the “-max-
disk” option and different maximum memory settings, as to be explained
in the Results section, using the “-max-memory” option.

All the assemblers were run with k=47 and the minimum occurrence
count of usable k-mers set to 2, using 40 threads in single-end mode.

We used Quast (Gurevich et al., 2013) (v5.0.2) with default parameter
values to evaluate assembly quality. The reference genomes of C. elegans
and H. sapiens used were WBcel235 and GRCh38.p12, respectively.

Code availability

The source codes of CQF-deNoise and SH-assembly are available
at https://github.com/Christina-hshi/CQF-deNoise.

git andhttps://github.com/Christina-hshi/SH-assembly.
git, respectively, both under the BSD 3-Clause license.

Results

CQF-deNoise has a low wrong removal rate of true
k-mers

Since CQF-deNoise removes potential false k-mers based on their low
occurrence frequencies, it could accidentally remove some true k-mers. We
tested how many true k-mers (those that appear in the reference genome)
were wrongly removed by CQF-deNoise using the C. elegans data set,
which had the highest depth of coverage and thus the highest expected
false-to-true k-mer ratio in the data caused by the sequencing errors.

When we did not perform noise removal, the frequency distribution of
the full set of k-mers was clearly multi-modal (Figure 1a), with a peak at
around 160 that likely corresponded to the median coverage of the true k-
mers, and another peak at 1 that should contain mostly false k-mers. Since
a local minimum was observed at 50, we used it as the demarcation point
and manually set the number of noise removal rounds of CQF-deNoise for
different values from 0 to 50 to inspect the change of counting results. We
set r to 8 based on the expected maximum k-mer occurrence count, and

determined the values of p and q according to the estimated number of
unique (true and false) k-mers as explained above (Table 5).

0 50 100 150 200 250 300
#Occurrence

104

105

106

107

108

109

#k
-m

er
s

a

0 10 20 30 40 50
#deNoise

0

20

40

60

80

-lo
g(

wr
on

g 
re

m
ov

al
 ra

te
)b

0 10 20 30 40 50
#deNoise

0

1

2

3

4

5

6

RA
M

 (G
B)

c

Fig. 1. Trade-off between memory consumption and wrong removal of true k-mers based
on the C. elegans data set with k = 28. a Distribution of k-mer occurrence counts without
noise removal. b-c Estimated wrong removal rate (b) and memory consumption (c) at
different numbers of k-mer removal rounds. The estimated wrong removal rate was defined
as the fraction of true k-mers having an occurrence count no larger than the number of
rounds of noise removal, estimated by the Poisson distribution.

Table 5. Parameter values of CQF in CQF-deNoise in the analysis of wrong
removal of true k-mers. Variables m, p, q and r respectively denote the number
of k-mer removal rounds, length of hash value signatures, length of the quotient
part, and length of the remainder part, as previously defined.

m p q r

0,1 40 32 8
2 39 31 8
5,10,15 38 30 8
20,25,30,40,50 37 29 8

As the number of noise removal rounds increased, as expected more
and more true k-mers were wrongly removed, but the rate remained low,
reaching the maximum of only 10−23.6 with 50 rounds of noise removal
(Figure 1b). As to be discussed below, in real situations the number of
noise removal rounds determined automatically by CQF-deNoise is usually
much smaller than 50, and thus the fraction of true k-mers being removed
is very small in practice.

At the same time, the memory consumption rapidly dropped from
5.5GB to 0.9GB as the number of noise removal rounds increased from 0
to 20, which was then stabilized thereafter (Figure 1c). To interpret this
memory consumption objectively, we performed the following conceptual
analysis. Assuming that most true k-mers in the genome are unique and
there is a uniform read coverage of the whole genome in the data set, there
would be around 100 million unique true k-mers in the C. elegans genome,
each with an occurrence count of 160. Since two counting slots are required
to store this average occurrence count when the remaining parameter, r,
is equal to 8 in addition to a slot storing the remainder (Materials and
Methods; Table 5), the total number of slots in the CQF would be at least
300 millions. Further, since the number of slots in the CQF has to be a
power of 2, the smallest number of slots is 229, which was exactly the
number of slots in the CQF we constructed, showing that our memory
usage of 0.9GB was optimal in this case.

https://github.com/Christina-hshi/CQF-deNoise.git
https://github.com/Christina-hshi/CQF-deNoise.git
https://github.com/Christina-hshi/SH-assembly.git
https://github.com/Christina-hshi/SH-assembly.git


7

CQF-deNoise has high counting accuracy

In addition to wrong removal of true k-mers, having identical hash values
for different k-mers can also introduce errors to k-mer counts. We evaluated
the counting accuracy of CQF-deNoise using the C. elegans data set in two
ways, again by setting the number of rounds of k-mer removal manually.
First, since singleton k-mers are mostly false k-mers, we evaluated the
proportion of singleton k-mers that remained in the CQF (the “singleton
survival rate”) and the proportion of non-singleton k-mers that did not
remain in the CQF (the “non-singleton removal rate”). Singletons can
survive due to the intrinsic nature of CQF that a low-occurrence k-mer
may share the same hash value with other k-mers, and thus their counts
add up. A non-singleton can be removed if it occurs no more than once
between every two consecutive rounds of removal. From the results, the
singleton survival rate remained low across the different numbers of noise
removal rounds, with only around 0.1%-0.2% of the singletons remained
in the CQF at the end of counting (Figure 2a). For the non-singletons,
less than 2.5% of them were removed (Figure 2b), and many of these
non-singletons are expected to be false k-mers based on the shape of the
multi-modal k-mer count distribution (Figure 1a).

1 2 5 10 15 20 25 30 40 50
#deNoise

0.0000

0.0005

0.0010

0.0015

0.0020

Si
ng

le
to

n 
su

rv
iv

al
 ra

te

a

1 2 5 10 15 20 25 30 40 50
#deNoise

0.000

0.005

0.010

0.015

0.020

0.025

No
n-

sin
gl

et
on

 re
m

ov
al

 ra
teb

1 2 5 10 15 20 25 30 40 50
#deNoise

0.00

0.01

0.02

0.03

0.04

0.05

Pr
op

or
tio

n 
of

 k
-m

er
s w

ith
in

co
rre

ct
 c

ou
nt

c

1 2 5 10 15 20 25 30 40 50
#deNoise

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 k
-m

er
s w

ith
co

un
t d

iff
er

en
ce

=1

d

Fig. 2. Counting accuracy based on the C. elegans data set with different numbers of rounds
of noise removal. a Singleton survival rate. b Non-singleton removal rate. c Proportion of
k-mers in CQF with an incorrect count. d Among all the k-mers in CQF with an incorrect
count, the proportion of k-mers with count difference being 1.

Second, for the k-mers that remained in the CQF at the end of counting,
we evaluated the correctness of their counts. We observed that only 2%-
4% of these k-mers had an incorrect count (Figure 2c), and among them,
more than half had a difference of only 1 between the actual count and the
count in the CQF (Figure 2d), showing that the noise removal procedure
of CQF-deNoise had minimal effects on counting accuracy.

CQF-deNoise uses less memory than other k-mer
counting methods

To benchmark the computational performance of CQF-deNoise, we
compared it with the four other k-mer counting methods. We first compared
the memory consumption of the different methods based on the five data
sets. From the results (Figure 3a,b), CQF-deNoise consistently consumed
the smallest amount of memory on all data sets for both values of k tested.
Compared to the next method with the lowest memory consumption, CQF-
deNoise had a memory usage reduction from 49% (F. vesca data set,
k = 55) to 76% (C. elegans data set, k = 28).

The running time of CQF-deNoise was similar to that of Jellyfish2 and
Squeakr and was consistently faster than BFCounter (Figure 3c,d). It was

C.elegans
F.vesca

Zea.mays

H.sapiens(1)

H.sapiens(2)
2-1

20

21

22

23

24

25

26

27

28

29

R
A

M
 (

G
B

)

b k=55

C.elegans
F.vesca

Zea.mays

H.sapiens(1)

H.sapiens(2)
21

23

25

27

29

211

213

215

217

R
u
n
n
in

g
 t

im
e
 (

se
c.

)

c
k=28

C.elegans
F.vesca

Zea.mays

H.sapiens(1)

H.sapiens(2)
21

23

25

27

29

211

213

215

217

R
u
n
n
in

g
 t

im
e
 (

se
c.

)

d
k=55

C.elegans
F.vesca

Zea.mays

H.sapiens(1)

H.sapiens(2)
2-1

20

21

22

23

24

25

26

27

28

29

R
A

M
 (

G
B

)

a k=28

BFCounter CQF-deNoise Jellyfish2 KMC3 Squeakr

Fig. 3. Comparison of the k-mer counting methods. a-b Memory usage when k=28 (a) and
k=55 (b). c-d Running time when k=28 (c) and k=55 (d). Both Jellyfish2 and KMC3 failed
to complete counting the k-mers in the H. sapiens (2) data set.

not faster than KMC3, but the short counting time of KMC3 came with the
cost of a much higher memory consumption, which was 21 (Z. mays data
set, k = 55) to 187 (C. elegans data set, k = 55) times of the memory
consumption of CQF-deNoise.

To evaluate the scalability of the methods, we sub-sampled reads of
the C. elegans data set at different depths to form multiple sub-data sets.
The corresponding k-mer counting results show that CQF-deNoise used
the least amount of memory at all depth values (Figure 4a). Importantly,
the increase in memory consumption with respect to sequencing depth was
smallest for CQF-deNoise, since it was largely unaffected by the additional
false k-mers. In terms of running time, the order of the different methods
remained unchanged at the different depths of coverage (Figure 4b).

100 150 200 250 300
Fold coverage

10 1

100

101

102

RA
M

 (G
B)

a
BFCounter CQF-deNoise Jellyfish2 KMC3 Squeakr

100 150 200 250 300
Fold coverage

101

102

103

104

Ru
nn

in
g 

tim
e 

(s
ec

.)

b

Fig. 4. Scalability of the k-mer counting methods. a-b Memory consumption (a) and
running time (b) of the different methods on random subsets of reads from the C. elegans
data set at 70× to 290× coverage.

Taken together, these results show that CQF-deNoise performs k-mer
counting with lower memory consumption while running as fast as the
other memory-based methods.

K-mer count querying using CQF-deNoise is efficient

Another important performance indicator is the time needed to query the
occurrence counts of k-mers after the counting process, when all the counts
are already loaded into memory. We compared the different methods using
the C. elegans and F. vesca data sets only due to the excessive amount of
time needed by some of the published methods when querying from the
larger data sets. For each of the two data sets, we queried both k-mers that



8 Shi and Yip

existed in the sequencing reads and were contained in all the counting data
structures as well as k-mers that did not exist in the reads.

The results (Table 6) show that CQF-deNoise completed these queries
using the smallest amount of time among all the methods for both data sets
and for both types of k-mers. The high query efficiency of CQF-deNoise
was likely due to the compactness of its data structure.

Table 6. Query performance of the different methods. For each species, the
running time of querying a) random k-mers that existed in the sequencing reads
and were contained in the data structures (“Exist”) and b) random k-mers that
did not exist in the sequencing reads (“Not exist”) are reported. Each query set
contained approximately 100 million and 550 million k-mers in the case of the
C. elegans data set and F. vesca data set, respectively.

Running time C. elegans F. vesca
(sec.) Exist Not exist Exist Not exist
BFCounter 70 51 353 294
CQF-deNoise 47 40 210 197
Jellyfish2 153 156 620 778
KMC3 95 160 429 1299
Squeakr 55 50 269 254

Fast k-mer counting by CQF-deNoise enables accurate
and efficient genome assembly

We performed de novo genome assemblies of the sequencing reads in the
two data sets with the highest depth of coverage, C. elegans (290×) and
H. sapiens (2) (106×), using SH-assembly and the other three assemblers.

For the C. elegans assembly, SH-assembly was the most efficient
method in terms of both memory usage and running time (Table 7). It used
2.6GB peak memory, which was 19% of the memory usage of the second
best memory-based method (ABySS 2.0 with Bloom filter, 13.6GB). As
for the disk-based method Minia 3, by default its maximum memory
setting (“-max-mem”) was set to 5GB, and in this assembly it used 6.6GB
peak memory, which was 2.5 times that of SH-assembly, together with
28.9GB of disk space. In terms of running time, SH-assembly used 7.8
minutes, which was only 11% of the other two memory-based methods
(SOAPdenovo2, 70.6 minutes; ABySS 2.0 with Bloom filter, 70.2 minutes)
and 41% of the default setting of Minia 3. To see whether the running time
of Minia 3 could be reduced by allowing it to use more memory, we
changed its maximum memory setting to 500GB. The resulting running
time was only slightly reduced (from 18.9 minutes to 16.8 minutes), at the
expense of the use of a lot more memory (123.3GB). We note that disk
operations were already sped up by the use of SSD in our tests.

Regarding assembly quality, SH-assembly was consistently one of
the best methods, in terms of NG50, NGA50, total lengths of contigs
and aligned contigs, and genome coverage of aligned contigs. Since SH-
assembly uses some functions of Minia 3 to perform assembly, the numbers
of misassemblies of the two methods (as evaluated by QUAST (Gurevich
et al., 2013)) were similar. However, the two methods did have some
differences at the unitig level. Specifically, Minia 3 produced more unitigs
than SH-assembly (6.4 millions and 3.5 millions, respectively), but a larger
proportion of the unitigs produced by Minia 3 were short (only 15,075 of
them were 500bp or longer, as compared to 20,450 of them produced by
SH-assembly). This was likely due to false k-mers caused by sequencing
errors, many of which were removed by CQF-deNoise in SH-assembly.

For the H. sapiens assembly, both the memory-based methods ABySS
2.0 without Bloom filter and SOAPdenovo2 could not finish within 72
hours (Table 8). SH-assembly finished the assembly in 2.7 hours, which
was 8% of the time needed by ABySS 2.0 with Bloom filter. SH-assembly
used 90.0GB peak memory, which was substantially lower than ABySS 2.0

(with Bloom filter, 227.3GB) and SOAPdenovo2 before it was terminated
(451.5GB). As for Minia 3, when its maximum memory was set to 5GB
and 500GB, it finished the assembly in 9.1 and 6.9 hours, respectively,
corresponding to 337% and 256% of the running time of-SH assembly.
The memory usage of Minia 3 was low in its default setting (23.7GB), but
it used quite a lot of disk space (222.3GB), which could have incurred an
overhead to the running time if disk access was slow.

The assembly produced by SH-assembly was the best in terms of
NG50, NGA50, total contig length, total contig aligned and genome
coverage, closely followed by Minia 3.

Overall, the assembly results produced by SH-assembly were
competitive to the other three methods, while it consistently used the least
amount of time and usually the least amount of memory.

Discussion and conclusion
In this study, we have proposed a memory-efficient k-mer counting
method, CQF-deNoise, that uses less memory than other state-of-the-art
k-mer counting methods but runs as fast as the memory-based methods. Its
low memory consumption is due to a procedure that removes potential false
k-mers caused by sequencing errors. When compared to the next method
with the lowest memory consumption, CQF-deNoise used 49%-76% less
memory when tested across different data sets and k-mer sizes.

The false k-mer removal procedure of CQF-deNoise automatically
determines the time and number of rounds of removal based on a user-
specified maximum tolerable rate of wrongly removing true k-mers. We
have shown that it was effective in removing false k-mers, with the counting
accuracy of true k-mers only minimally affected. Although some other k-
mer counting methods can also remove potential false k-mers, they usually
have one structure that stores all true and false k-mers, causing an increase
of memory usage as the sequencing depth (and number of false k-mers)
increases. In comparison, the dynamic removal procedure of CQF-deNoise
leads to virtually constant memory usage at different sequencing depths.

We have also developed a de novo genome assembly, SH-assembly,
which uses CQF-deNoise for fast k-mer counting. Comparing with three
other commonly used methods, it required less running time and usually
less memory without affecting assembly quality. When assembling the
contigs of a human genome based on a data set with 106× average
genome coverage, SH-assembly finished in 2.7 hours using only 90GB
peak memory. The low computational requirements of SH-assembly make
it a good candidate assembler for low-cost and portable sequencers.

We provide CQF-deNoise and SH-assembly as open-source packages.
The main program of CQF-deNoise contains additional options for users
who want to have more control of the counting process, such as specifying
the exact number of noise removal rounds to be performed. The package
also comes with a number of extra tools for manipulating CQFs in general.

One limitation of CQF-deNoise is that some k-mers that remain in
the CQF can actually have a lower occurrence count than some k-mers
completely removed from the CQF. This is because whether a k-mer would
be removed depends not only on its occurrence count, but also on the
timing of its different occurrences. A k-mer remains if and only if there
are two or more occurrences of it within the time periods between any two
consecutive noise removal rounds. This would not affect the removal of
singleton k-mers, but by chance some false k-mers do occur more than
once and are not removed in this way. When it is crucial to have as few
false k-mers remaining in the CQF as possible, one possible remedy is to
construct a histogram of k-mer occurrence frequencies after counting, use
it to determine occurrence counts that likely belong to the false k-mers by
inspecting the distribution (as was done in Figure 1), and finally perform
a post-processing round of noise removal using the identified threshold.



9

Table 7. Comparing the assemblers based on the C. elegans data set. Disk usage is reported only for the disk-based method Minia 3. Statistics related to contig
lengths and alignments involve only contigs of 500bp or longer.

Assembly
Memory
usage (GB)

Disk usage
(GB)

Running
time (min.)

NG50
(bp)

NGA50
(bp)

Total contig
length (bp)

Total aligned
contigs (bp)

Genome
coverage (%)

Misassemblies
per Mb

ABySS 2.0 (no Bloom filter) 22.6 - 346.9 3,117 2,859 92,817,982 88,153,905 87.2 0.09
ABySS 2.0 (with Bloom filter) 13.6 - 70.2 3,069 2,845 92,529,312 88,037,316 87.1 0.09
Minia 3 (“-max-mem 5G”) 6.6 28.9 18.9 9,437 8,157 94,562,769 89,665,796 89.2 0.50
Minia 3 (“-max-mem 500G”) 123.3 29.2 16.8 9,437 8,151 94,556,501 89,659,574 89.2 0.50
SH-assembly 2.6 - 7.8 9,329 8,251 94,660,023 89,794,709 89.3 0.49
SOAPdenovo2 65.3 - 70.6 2,133 2,017 88,897,024 85,644,561 84.8 0.13

Table 8. Comparing the assemblers based on the H. sapiens (2) data set. Disk usage is reported only for the disk-based method Minia 3. Statistics related to contig
lengths and alignments involve only contigs of 500bp or longer. ABySS 2.0 without using Bloom filter and SOAPdenovo 2 both could not finish the assembly within
72 hours.

Assembly
Memory
usage (GB)

Disk usage
(GB)

Running
time (hr.)

NG50
(bp)

NGA50
(bp)

Total contig
length (bp)

Total aligned
contigs (bp)

Genome
coverage (%)

Misassemblies
per Mb

ABySS 2.0 (no Bloom filter) ≥518.2 - >72.0 N/A N/A N/A N/A N/A N/A
ABySS 2.0 (with Bloom Filter) 227.3 - 32.0 1,521 1,518 2,194,175,948 2,192,295,093 71.6 0.09
Minia 3 (“-max-mem 5G”) 23.7 222.3 9.1 1,984 1,977 2,278,869,717 2,275,829,647 74.4 0.97
Minia 3 (“-max-mem 500G”) 352.6 222.9 6.9 1,984 1,977 2,278,794,715 2,275,760,368 74.4 0.98
SH-assembly 90.0 - 2.7 2,048 2,041 2,284,444,349 2,281,280,705 74.6 1.18
SOAPdenovo2 ≥451.5 - >72.0 N/A N/A N/A N/A N/A N/A

Acknowledgements
We thank members in the Yip Lab for helpful discussions. KYY
was partially supported by the CUHK Young Researcher Award and
Outstanding Fellowship, the Hong Kong Research Grants Council General
Research Funds 14145916, 14170217, Collaborative Research Funds
C4054-16G, C4045-18WF, C4057-18EF and Theme-based Research
Scheme T12C-714/14-R. This work was also supported by the Hong Kong
Epigenomics Project (EpiHK).

References
Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7), 422–426.
Bushnell, B. (2020). Bbmap: Short read aligner for dna and rna-seq data.

[Online; accessed 8-July-2020].
Chapuis, G. et al. (2011). Parallel and memory-efficient reads indexing

for genome assembly. In PPAM 2011: Parallel Processing and Applied
Mathematics, pages 272–280.

Chikhi, R. and Rizk, G. (2013). Space-efficient and exact de Bruijn
graph representation based on a Bloom filter. Algorithms for Molecular
Biology, 8(1), 22.

Chikhi, R. et al. (2016). Compacting de Bruijn graphs from sequencing
data quickly and in low memory. Bioinformatics, 32(12), i201–i208.

Fan, L. et al. (2000). Summary cache: A scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on Networking, 8(3), 281–
293.

Goodwin, S. et al. (2016). Coming of age: Ten years of next-generation
sequencing technologies. Nature Reviews Genetics, 17(6), 333–351.

Gurevich, A. et al. (2013). QUAST: Quality assessment tool for genome
assemblies. Bioinformatics, 29(8), 1072–1075.

Heo, Y. et al. (2014). BLESS: Bloom filter-based error correction solution
for high-throughput sequencing reads. Bioinformatics, 30(10), 1354–
1362.

Huang, W. et al. (2011). ART: A next-generation sequencing read
simulator. Bioinformatics, 28(4), 593–594.

Jackman, S. D. et al. (2017). ABySS 2.0: Resource-efficient assembly of
large genomes using a bloom filter. Genome Research, 27(5), 768–777.

Kokot, M. et al. (2017). KMC 3: Counting and manipulating k-mer
statistics. Bioinformatics, 33(17), 2759–2761.

Li, R. et al. (2010). The sequence and de novo assembly of the giant panda
genome. Nature, 463(7279), 311–317.

Li, X. and Waterman, M. S. (2003). Estimating the repeat structure and
length of DNA sequences using l-tuples. Genome Reearch, 13(8), 1916–
1922.

Lim, E.-C. et al. (2014). Trowel: A fast and accurate error correction
module for illumina sequencing reads. Bioinformatics, 30(22), 3264–
3265.

Luo, R. et al. (2012). SOAPdenovo2: An empirically improved memory-
efficient short-read de novo assembler. Gigascience, 1(1), 18.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinformatics,
27(6), 764–770.

Melsted, P. and Pritchard, J. K. (2011). Efficient counting of k-mers in
DNA sequences using a bloom filter. BMC Bioinformatics, 12(1), 333.

Mohamadi, H. et al. (2016). ntHash: Recursive nucleotide hashing.
Bioinformatics, 32(22), 3492–3494.

Mohamadi, H. et al. (2017). ntCard: A streaming algorithm for cardinality
estimation in genomics data. Bioinformatics, 33(9), 1324–1330.

Pandey, P. et al. (2017a). A general-purpose counting filter: Making every
bit count. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 775–787.

Pandey, P. et al. (2017b). Squeakr: An exact and approximate k-mer
counting system. Bioinformatics, 34(4), 568–575.

Reuter, J. A. et al. (2015). High-throughput sequencing technologies.
Molecular Cell, 58(4), 586–597.

Roy, R. S. et al. (2014). Turtle: Identifying frequent k-mers with cache-
efficient algorithms. Bioinformatics, 30(14), 1950–1957.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-
read sequencing experiments. Nature Biotechnology, 34(3), 300–302.

Souvorov, A. et al. (2018). SKESA: Strategic k-mer extension for
scrupulous assemblies. Genome Biology, 19(1), 153.

Vollger, M. R. et al. (2019). Long-read sequence and assembly of
segmental duplications. Nature Methods, 16(1), 88–94.


